Affiliations 

  • 1 Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. Electronic address: [email protected]
  • 2 Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
  • 3 Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • 4 Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • 5 Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. Electronic address: [email protected]
  • 6 Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia. Electronic address: [email protected]
Int J Biol Macromol, 2024 Feb;257(Pt 1):128544.
PMID: 38061525 DOI: 10.1016/j.ijbiomac.2023.128544

Abstract

This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.