Displaying publications 41 - 60 of 77 in total

Abstract:
Sort:
  1. Abdullah N, Chase HA
    Biotechnol Bioeng, 2005 Nov 20;92(4):501-13.
    PMID: 16080185
    Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His(6) by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His(6) to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.
    Matched MeSH terms: Chromatography, Ion Exchange/methods
  2. Anuar N, Mohd Adnan AF, Saat N, Aziz N, Mat Taha R
    ScientificWorldJournal, 2013;2013:810547.
    PMID: 24174918 DOI: 10.1155/2013/810547
    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R (2) = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R (2) = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.
    Matched MeSH terms: Chromatography, Ion Exchange
  3. Barbour A, Philip K, Muniandy S
    PLoS One, 2013;8(10):e77751.
    PMID: 24147072 DOI: 10.1371/journal.pone.0077751
    BACKGROUND: Lantibiotics are small lanthionine-containing bacteriocins produced by lactic acid bacteria. Salivaricin 9 is a newly discovered lantibiotic produced by Streptococcus salivarius. In this study we present the mechanism of action of salivaricin 9 and some of its properties. Also we developed new methods to produce and purify the lantibiotic from strain NU10.

    METHODOLOGY/PRINCIPAL FINDINGS: Salivaricin 9 was found to be auto-regulated when an induction assay was applied and this finding was used to develop a successful salivaricin 9 production system in liquid medium. A combination of XAD-16 and cation exchange chromatography was used to purify the secondary metabolite which was shown to have a molecular weight of approximately 3000 Da by SDS-PAGE. MALDI-TOF MS analysis indicated the presence of salivaricin 9, a 2560 Da lantibiotic. Salivaricin 9 is a bactericidal molecule targeting the cytoplasmic membrane of sensitive cells. The membrane permeabilization assay showed that salivaricin 9 penetrated the cytoplasmic membrane and induced pore formation which resulted in cell death. The morphological changes of test bacterial strains incubated with salivaricin 9 were visualized using Scanning Electron Microscopy which confirmed a pore forming mechanism of inhibition. Salivaricin 9 retained biological stability when exposed to high temperature (90-100°C) and stayed bioactive at pH ranging 2 to 10. When treated with proteinase K or peptidase, salivaricin 9 lost all antimicrobial activity, while it remained active when treated with lyticase, catalase and certain detergents.

    CONCLUSION: The mechanism of antimicrobial action of a newly discovered lantibiotic salivaricin 9 was elucidated in this study. Salivaricin 9 penetrated the cytoplasmic membrane of its targeted cells and induced pore formation. This project has given new insights on lantibiotic peptides produced by S. salivarius isolated from the oral cavities of Malaysian subjects.

    Matched MeSH terms: Chromatography, Ion Exchange
  4. Azmi AF, Mustafa S, Hashim DM, Manap YA
    Molecules, 2012 Feb 07;17(2):1635-51.
    PMID: 22314383 DOI: 10.3390/molecules17021635
    Bamboo shoot crude polysaccharides (BSCP) extracted from the shoots of Gigantochloa levis gave about 3.27 ± 0.18% on dry basis and a very minute percentage of protein (0.02 ± 0.01%). The molecular weight of BSCP estimated by gel chromatography was found to be around 7.49 × 103 Da, while the molecular weights of purified fractions (F1 to F5) were around 1550.96, 1471.63, 1685.78, 1691.61 and 1551.67 Da, respectively. The FTIR spectrum of BSCP revealed the possibility that the extract contains β-glucan, which can be considered a valuable compound for the medical and food industries. These relate to the resistance of BSCP towards artificial human gastric juice which is more than 99%. Prebiotic activity tested using BSCP as a carbon source showed significant increase in the growth of B. animalis ATCC 1053, B. longum BB 536 and L. acidophilus ATCC 4356 as compared to the use of FOS. Survivality of S. choleraesuis JCM 6977 was found to be slower in both BSCP and FOS. Study conducted reflects a good sign for the BSCP to be exploited as a promising prebiotic.
    Matched MeSH terms: Chromatography, Ion Exchange
  5. Ho CW, Tan WS, Kamaruddin S, Ling TC, Tey BT
    Biotechnol Appl Biochem, 2008 May;50(Pt 1):49-59.
    PMID: 17760564
    HBcAg (hepatitis B core antigen) is a nanoplex bioproduct that has a great potential in the development of therapeutic drugs and vaccines. In the present study, a continuous-flow bead milling for the disruption of Escherichia coli was optimized and a direct recovery protocol to isolate the recombinant HBcAg from the unclarified E. coli disruptate was developed. The optimal condition for continuous-flow bead milling for the release of HBcAg from E. coli was achieved at a feed flow rate of 15 litres/h, biomass concentration of 10% [ww/v (wet weight/vol.)] and impeller tip speed of 14 m/s. The sucrose-density-gradient analysis showed that the particulate form of the HBcAg released by this optimal condition is still preserved. In the direct purification of HBcAg from the unclarified disruptate, the AE-EBAC (anion-exchange expanded-bed adsorption chromatography) technique was employed. A 54% adsorption and 50.7% recovery of HBcAg were achieved in this direct recovery process. The purity of HBcAg recovered was 49.8%, which corresponds to a purification factor of 2.0. ELISA showed that the HBcAg recovered is functionally active.
    Matched MeSH terms: Chromatography, Ion Exchange
  6. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal Biochem, 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
    Matched MeSH terms: Chromatography, Ion Exchange
  7. Musalmah M, Normah J, Wan Mohamad WB, Salwah ON, Fatah HA, Nik Zahari NA
    Med J Malaysia, 2000 Sep;55(3):352-6.
    PMID: 11200716
    The effect of HbE, a hemoglobin variant, on the determination of HbA1/HbA1c using 4 commercial kits based on cation-exchange resin, cation-exchange column chromatography and specific antibody techniques was studied. Fifty-eight normal and 63 HbE heterozygous subjects were tested for HbA1 and HbA1c using 4 commercial kits i.e. Eagles Diagnostics, Boehringer Mannehim (BM), Diastat and Ames DCA 2000. Analyses of the samples by the 4 kits were done within one week and samples were stored at 4 degrees C before analysis. The results showed that HbE affects the determination of glycosylated hemoglobin using cation-exchange based and not kits based on specific antibody techniques.
    Matched MeSH terms: Chromatography, Ion Exchange
  8. Mashitah, Zulfadhly Z, Bhatia S
    PMID: 10595446
    Non-living biomass of Pycnoporus sanguineus has an ability to take up lead,copper and cadmium ions from an aqueous solution. The role played by various functional groups in the cell wall and the mechanism uptake of lead, copper and cadmium by Pycnoporus sanguineus were investigated. Modification of the functional groups such as lipids, carboxylic and amino was done through chemical pretreatment in order to study their role in biosorption of metal ions. Results showed that the chemical modification of these functional groups has modified the ability of biomass to remove lead, copper and cadmium ions from the solution. Scanning electron microscopy was also used to study the morphological structure of the biomass before and after adsorption. The electron micrograph indicated that the structure of biomass changed due to the adsorption of the metals onto the cell walls. Furthermore, the X-ray energy dispersion analysis (EDAX) showed that the calcium ion present in the cell wall of biomass was released and replaced by lead ions. This implied that an ion exchange is one of the principal mechanisms for metal biosorption.
    Matched MeSH terms: Ion Exchange
  9. Tang SN, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595441
    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
    Matched MeSH terms: Ion Exchange Resins
  10. Tan NH, Swaminathan S
    Int. J. Biochem., 1992 Jun;24(6):967-73.
    PMID: 1612186
    1. The L-amino acid oxidase of the monocellate cobra (Naja naja kaouthia) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was 112,200 as determined by Sephadex G-200 gel filtration chromatography, and 57,400 as determined by SDS-polyacrylamide gel electrophoresis. 2. The enzyme had an isoelectric point of 8.12 and a pH optimum of 8.5. It showed remarkable thermal stability, and, unlike many venom L-amino acid oxidase, was also stable in alkaline medium. The enzyme was partially inactivated by freezing. 3. The enzyme was very active against L-phenylalanine and L-tyrosine, moderately active against L-tryptophan, L-methionine, L-leucine, L-norleucine, L-arginine and L-norvaline. Other L-amino acids were oxidized slowly or not oxidized. 4. Kinetic studies suggest the presence of a side-chain binding site in the enzyme, and that the binding site comprises of at least four hydrophobic subsites.
    Matched MeSH terms: Chromatography, Ion Exchange
  11. Ali ZM, Armugam S, Lazan H
    Phytochemistry, 1995 Mar;38(5):1109-14.
    PMID: 7766393
    The fruit extracts of ripening cv. Harumanis mango contained a number of glycosidases and glycanases. Among the glycosidases, beta-D-galactosidase (EC 3.2.1.23) appeared to be the most significant. The enzyme activity increased in parallel with increase in tissue softness during ripening. Mango beta-galactosidase was fractionated into three isoforms, viz. beta-galactosidase I, II and III by a combination of chromatographic procedures on DEAE-Sepharose CL-6B, CM-Sepharose and Sephacryl S-200 columns. Apparent Km values for the respective beta-galactosidase isoforms for p-nitrophenyl beta-D-galactoside were 3.7, 3.3 and 2.7 mM, and their Vmax values were 209, 1024 and 62 nkat mg-1 protein. Optimum activity occurred at ca pH 3.2 for beta-galactosidase I and II, and pH 3.6 for beta-galactosidase III. Mango beta-galactosidase and its isoforms have galactanase activity, and the activity of the latter in the crude extracts generally increased during ripening. The close correlation between changes in beta-galactosidase activity, tissue softness, and increased pectin solubility and degradation suggests that beta-galactosidase might play an important role in cell wall pectin modification and softening of mango fruit during ripening.
    Matched MeSH terms: Chromatography, Ion Exchange
  12. Azila N, Siao FK, Othman I
    PMID: 1675964
    1. An extract prepared from the tentacle of the jellyfish (CE), Catostylus mosaicus exhibited haemolytic, oedema and haemorrhage-inducing activities. 2. Acetone treatment of the tentacle extract produced an acetone soluble extract (AE) which showed an increase in specific haemolytic and haemorrhagic activities by 25- and 120-fold respectively; the minimum oedema dose was reduced by 30-fold. 3. The AE caused a rapid onset of oedema in the mouse foot pad. The effect was long-lasting, reaching a maximum in about 30 min after injection and sustained up to 4 hr. 4. Fractionation of the AE on Q-Sepharose gave 4 bound fractions which induced oedema and haemorrhage; however only 3 of the fractions exhibited haemolytic activity.
    Matched MeSH terms: Chromatography, Ion Exchange
  13. Tan NH, Arunmozhiarasi A
    Biochem. Int., 1989 Apr;18(4):785-92.
    PMID: 2764979
    An acidic, lethal phospholipase Az was purified to electrophoretic homogeneity from the venom of the Malayan cobra (Naja naja sputatrix). The enzyme has an isoelectric point of 5.58, a molecular weight of 12000, and a medium lethal dose (LD50) of 0.86 micrograms/g in mice by intravenous injection. The enzyme also exhibited weak anticoagulant and edema-forming activities. The amino acid composition of the enzyme is similar to those of other cobra venom phospholipases Az.
    Matched MeSH terms: Chromatography, Ion Exchange
  14. Chai TT, Xiao J, Mohana Dass S, Teoh JY, Ee KY, Ng WJ, et al.
    Food Chem, 2021 Mar 15;340:127876.
    PMID: 32871354 DOI: 10.1016/j.foodchem.2020.127876
    Jackfruit is a sweet tropical fruit with very pleasant aroma, and the ripe seeds are edible. In this study, jackfruit seed proteins were isolated and subjected to trypsin digestion. The resultant protein hydrolysate was then subjected to antioxidant assay-guided purification, using centrifugal filtration, C18 reverse-phase and strong cation exchange (SCX) fractionations. The purified SCX fraction was further analyzed by de novo peptide sequencing, and two peptide sequences were identified and synthesized. Peptide JFS-2 (VGPWQK) was detected with antioxidant potential, with EC50 value comparable to that of commercial GSH antioxidant peptide. Additionally, the identified peptides were tested with protein protection potential, in an albumin protein denaturation inhibitory assay. Concurrently, we also investigated the pH, temperature, and gastrointestinal-digestion stability profiles for the identified peptide. With further research efforts, the identified peptides could potentially be developed into preservative agent for protein-rich food systems or as health-promoting diet supplements.
    Matched MeSH terms: Chromatography, Ion Exchange
  15. El-Deeb NM, El-Adawi HI, El-Wahab AEA, Haddad AM, El Enshasy HA, He YW, et al.
    Front Cell Dev Biol, 2019;7:165.
    PMID: 31457012 DOI: 10.3389/fcell.2019.00165
    Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.
    Matched MeSH terms: Chromatography, Ion Exchange
  16. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Ion Exchange
  17. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
    Matched MeSH terms: Ion Exchange
  18. Das K, Anis M, Azemi BM, Ismail N
    Biotechnol Bioeng, 1995 Dec 5;48(5):551-5.
    PMID: 18623521
    Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.
    Matched MeSH terms: Ion Exchange Resins
  19. Hasnah Haron, Osman Hassan, Mamot Said
    This study comprised of physicochemical characterizations of starch extracted from Msp94 sweet potato tuber and production of high fructose glucose syrup from the starch. Msp94 sweet potato starch consisted of 7.3% water, 0.2% protein, 0.4% fat, 1.3% total ash, 94.8% total carbohydrates, 83.0% starch and 20.6% apparent amylose. The starch granules were spherical, polygonal and irregular in shapes with the size of 13-14 mm. Enzymatic hydrolysis of Msp94 sweet potato starch for 24,48, 72 hours, using a mixture of amyglucosidase-pullulanase enzymes during saccharification process, produced starch hydrolysates with dextrose equivalent (DE) of 94.8, 99.1, 99.3 respectively. This is followed by reduction in viscosity of the starch hydrolysates. Conversion of the Msp94 starch to percent of glucose after hydrolysing for 24,48 and 72 hours were 97.1%, 109.5% and 103.2%, respectively. Msp94 starch hydrolysates was then purified using three types of ion exchange resins and isomerized to highfructose syrup using glucose isomerase enzyme (Sweetzyme T). Thefructose content in isomerized Msp94 syrup was (43.8-46.5%) was comparable to the fructose content (44%) in commercial High Fructose Corn Syrup (HFCS) 42.
    [Kajian ini merangkumi pencirian fizikokimia kanji yang diekstrak daripada ubi keledek Msp94 dan penghasilan sirap glukosa berfruktosa tinggi daripada kanji ini. Kanji ubi keledek Msp94 mengandungi 7.3% air, 0.2% protein, 0.4% lemak, 1.3% abu total, 94.8% karbohidrat total, 83.0% kanji dan 20.6% amilosa ketara. Purata saiz granul kanji adalah 13-14 mm, berbentuk bulat, poligon dan bentuk yang tidak tetap. Hidrolisis berenzim menggunakan gabungan enzim glukoamilase-pululanase dalam proses sakarifikasi, yang dijalankan ke atas kanji ubi keledek Msp94 selama 24, 48, 72 jam menghasilkan hidrolisat kanji dengan setaraan dekstrosa (DE) masing-masing pada 94.8, 99.1, 99.3. 1ni diikuti dengan kelikatan hidrolisat kanji yang semakin menurun. Penukaran kanji Msp94 kepada peratus glukosa adalah sebanyak 97.1 %, 109.5% dan 103.2% setelah dihidrolisis selama 24,48 dan 72 jam. Hidrolisat kanji Msp94 ditulenkan menggunakan tiga jenis resin penukar ion dan diisomer kepada sirap berfruktosa tinggi menggunakan enzim glukosa isomerase (Sweetzyme T). Kandungan fruktosa (43.8-46.5%) dalam sirap Msp94 yang telah diisomer adalah setara dengan kandunganfruktosa (44%) dalam sirap komersial, High Fructose Corn Syrup (HFCS) 42].
    Matched MeSH terms: Ion Exchange Resins
  20. Ng HW, Lee MFX, Chua GK, Gan BK, Tan WS, Ooi CW, et al.
    J Sep Sci, 2018 May;41(10):2119-2129.
    PMID: 29427396 DOI: 10.1002/jssc.201700823
    Hepatitis B virus-like particles expressed in Escherichia coli were purified using anion exchange adsorbents grafted with polymer poly(oligo(ethylene glycol) methacrylate) in flow-through chromatography mode. The virus-like particles were selectively excluded, while the relatively smaller sized host cell proteins were absorbed. The exclusion of virus-like particles was governed by the accessibility of binding sites (the size of adsorbents and the charge of grafted dextran chains) as well as the architecture (branch-chain length) of the grafted polymer. The branch-chain length of grafted polymer was altered by changing the type of monomers used. The larger adsorbent (90 μm) had an approximately twofold increase in the flow-through recovery, as compared to the smaller adsorbent (30 μm). Generally, polymer-grafted adsorbents improved the exclusion of the virus-like particles. Overall, the middle branch-chain length polymer grafted on larger adsorbent showed optimal performance at 92% flow-through recovery with a purification factor of 1.53. A comparative study between the adsorbent with dextran grafts and the polymer-grafted adsorbent showed that a better exclusion of virus-like particles was achieved with the absorbent grafted with inert polymer. The grafted polymer was also shown to reduce strong interaction between binding sites and virus-like particles, which preserved the particles' structure.
    Matched MeSH terms: Chromatography, Ion Exchange
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links