Displaying all 7 publications

Abstract:
Sort:
  1. Show PL, Ooi CW, Song CP, Chai WS, Lin GT, Liu BL, et al.
    Food Chem, 2021 May 01;343:128543.
    PMID: 33187742 DOI: 10.1016/j.foodchem.2020.128543
    Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.
    Matched MeSH terms: Muramidase/isolation & purification*
  2. Chia SR, Tang MSY, Chow YH, Ooi CW, Rambabu K, Zhu L, et al.
    Mol Biotechnol, 2019 Oct;61(10):715-724.
    PMID: 31350687 DOI: 10.1007/s12033-019-00200-7
    Biomolecules produced by living organisms can perform vast array of functions and play an important role in the cell. Important biomolecules such as lysozyme, bovine serum albumin (BSA), and bromelain are often studied by researchers due to their beneficial properties. The application of reverse micelles is an effective tool for protein separation from their sources due to the special system structure. Mechanisms of transferring biomolecules and factors that influence the extraction of biomolecules are reviewed in this paper. The enhancement of biomolecule extraction could be achieved depending on the properties of reverse micelles. This paper provides an overall review on lysozyme, BSA, and bromelain extraction by reverse micelle for various applications.
    Matched MeSH terms: Muramidase/isolation & purification*
  3. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Muramidase/isolation & purification
  4. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
    Matched MeSH terms: Muramidase/isolation & purification*
  5. Liu BL, Ooi CW, Ng IS, Show PL, Lin KJ, Chang YK
    Food Chem, 2020 Oct 15;327:127038.
    PMID: 32447136 DOI: 10.1016/j.foodchem.2020.127038
    Polyacrylonitrile nanofiber membrane functionalized with tris(hydroxymethyl)aminomethane (P-Tris) was used in affinity membrane chromatography for lysozyme adsorption. The effects of pH and protein concentration on lysozyme adsorption were investigated. Based on Langmuir model, the adsorption capacity of P-Tris nanofiber membrane was estimated to be 345.83 mg/g. For the operation of dynamic membrane chromatography with three-layer P-Tris nanofiber membranes, the optimal operating conditions were at pH 9, 1.0 mL/min of feed flow rate, and 2 mg/mL of feed concentration. Chicken egg white (CEW) was applied as the crude feedstock of lysozyme in the optimized dynamic membrane chromatography. The percent recovery and purification factor of lysozyme obtained from the chromatography were 93.28% and 103.98 folds, respectively. Our findings demonstrated the effectiveness of P-Tris affinity nanofiber membrane for the recovery of lysozyme from complex CEW solution.
    Matched MeSH terms: Muramidase/isolation & purification*
  6. Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL
    Food Chem, 2021 Oct 01;358:129914.
    PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914
    A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
    Matched MeSH terms: Muramidase/isolation & purification*
  7. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Muramidase/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links