Displaying publications 41 - 60 of 8224 in total

Abstract:
Sort:
  1. Chu C, Liu D, Wang D, Hu S, Zhang Y
    Int J Immunopathol Pharmacol, 2023;37:3946320231211795.
    PMID: 37942552 DOI: 10.1177/03946320231211795
    BACKGROUND: The TP53 gene is estimated to be mutated in over 50% of tumors, with the majority of tumors exhibiting abnormal TP53 signaling pathways. However, the exploration of TP53 mutation-related LncRNAs in Hepatocellular carcinoma (HCC) remains incomplete. This study aims to identify such LncRNAs and enhance the prognostic accuracy for Hepatoma patients.

    MATERIAL AND METHODS: Differential gene expression was identified using the "limma" package in R. Prognosis-related LncRNAs were identified via univariate Cox regression analysis, while a prognostic model was crafted using multivariate Cox regression analysis. Survival analysis was conducted using Kaplan-Meier curves. The precision of the prognostic model was assessed through ROC analysis. Subsequently, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were executed on the TCGA dataset via the TIDE database. Fractions of 24 types of immune cell infiltration were obtained from NCI Cancer Research Data Commons using deconvolution techniques. The protein expression levels encoded by specific genes were obtained through the TPCA database.

    RESULTS: In this research, we have identified 85 LncRNAs associated with TP53 mutations and developed a corresponding signature referred to as TP53MLncSig. Kaplan-Meier analysis revealed a lower 3-year survival rate in high-risk patients (46.9%) compared to low-risk patients (74.2%). The accuracy of the prognostic TP53MLncSig was further evaluated by calculating the area under the ROC curve. The analysis yielded a 5-year ROC score of 0.793, confirming its effectiveness. Furthermore, a higher score for TP53MLncSig was found to be associated with an increased response rate to immune checkpoint blocker (ICB) therapy (p = .005). Patients possessing high-risk classification exhibited lower levels of P53 protein expression and higher levels of genomic instability.

    CONCLUSION: The present study aimed to identify and validate LncRNAs associated with TP53 mutations. We constructed a prognostic model that can predict chemosensitivity and response to ICB therapy in HCC patients. This novel approach sheds light on the role of LncRNAs in TP53 mutation and provides valuable resources for analyzing patient prognosis and treatment selection.

    Matched MeSH terms: Mutation/genetics; Tumor Suppressor Protein p53/genetics
  2. Aupalee K, Srisuka W, Taai K, Takaoka H, Saeung A
    J Med Entomol, 2023 Nov 14;60(6):1330-1342.
    PMID: 37669777 DOI: 10.1093/jme/tjad118
    Simulium (Asiosimulium) khongchiamense sp. nov. is described based on females, males, pupae, and mature larvae collected from Khong Chiam District, Ubon Ratchathani Province, northeastern Thailand. It is characterized in the female by the medium-long sensory vesicle, scutum with 3 dark longitudinal vittae and elongate cercus; in the male by the number of upper-eye (large) facets in 17 or 18 vertical rows and 18 or 19 horizontal rows, hind basitarsus moderately enlarged and ventral plate with the posterior margin moderately concave medially; in the pupa by the head and thoracic integument sparsely covered with tubercles and gill of arborescent type with 32 or 33 filaments; and in the larva by the postgenal cleft deep, reaching the posterior margin of the hypostoma and sheath of the subesophageal ganglion dark pigmented. DNA analysis based on COI gene of all known species of the subgenus Asiosimulium, except for S. shanense and S. suchitrae, indicated that this new species can be clearly differentiated from all other related species (S. phurueaense, S. oblongum, S. saeungae, S. furvum, and S. wanchaii) with interspecific genetic distances ranging between 4.79% and 19.18%. This is the eighth species of the subgenus Asiosimulium. Taxonomic notes are given to distinguish this new species from the 7 known species members in its same subgenus. Additionally, keys to species of all members in the subgenus Asiosimulium are provided.
    Matched MeSH terms: Larva/genetics; Pupa/genetics
  3. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, et al.
    BMC Res Notes, 2023 Sep 12;16(1):211.
    PMID: 37700361 DOI: 10.1186/s13104-023-06495-9
    OBJECTIVES: Pollen is a useful tool for identifying the provenance and complex ecosystems surrounding honey production in Malaysian forests. As native key pollinators in Malaysia, Apis dorsata and Heterotrigona itama forage on various plant/pollen species to collect honey. This study aims to generate a dataset that uncovers the presence of these plant/pollen species and their relative abundance in the honey of A. dorsata and H. itama. The information gathered from this study can be used to determine the geographical and botanical origin and authenticity of the honey produced by these two species.

    RESULTS: Sequence data were obtained for both A. dorsata and H. itama. The raw sequence data for A. dorsata was 5 Mb, which was assembled into 5 contigs with a size of 6,098,728 bp, an N50 of 15,534, and a GC average of 57.42. Similarly, the raw sequence data for H. itama was 6.3 Mb, which was assembled into 11 contigs with a size of 7,642,048 bp, an N50 of 17,180, and a GC average of 55.38. In the honey sample of A. dorsata, we identified five different plant/pollen species, with only one of the five species exhibiting a relative abundance of less than 1%. For H. itama, we identified seven different plant/pollen species, with only three of the species exhibiting a relative abundance of less than 1%. All of the identified plant species were native to Peninsular Malaysia, especially the East Coast area of Terengganu.

    DATA DESCRIPTION: Our data offers valuable insights into honey's geographical and botanical origin and authenticity. Metagenomic studies could help identify the plant species that honeybees forage and provide preliminary data for researchers studying the biological development of A. dorsata and H. itama. The identification of various flowers from the eDNA of honey that are known for their medicinal properties could aid in regional honey with accurate product origin labeling, which is crucial for guaranteeing product authenticity to consumers.

    Matched MeSH terms: Bees/genetics; Pollen/genetics
  4. Takaoka H, Otsuka Y, Fukuda M, Low VL, Ya'cob Z
    Trop Biomed, 2023 Mar 01;40(1):88-100.
    PMID: 37356008 DOI: 10.47665/tb.40.1.007
    Simulium (Gomphostilbia) okinawense Takaoka and S. (G.) tokarense Takaoka, both from the Nansei Islands, Japan, were morphologically reexamined and genetically analysed by using the COI gene sequences. The female, male, pupa and mature larva of the two species are redescribed. Morphological reexamination shows that both species are more similar to species in the S. asakoae species-group than to those in the S. ceylonicum species-group, by having a medium-long female sensory vesicle, yellow tuft hairs (S. (G.) okinawense) or yellow tuft hairs mixed with a few to several dark hairs (S. (G.) tokarense) at the base of the radial vein in the female and male, and medium-long larval postgenal cleft. However, the body of the male ventral plate (viewed ventrally) is parallel-sided (S. (G.) okinawense) or parallelsided or slightly narrowed (S. (G.) tokarense) and not emarginated basally, differing from those of most species in the S. asakoae species-group. Our genetic analysis shows that S. (G.) tokarense is in the S. asakoae species-group, and S. (G.) okinawense formed a separate sister clade with other members of the S. asakoae species-group with high bootstrap support. From the results of morphological and genetic analysis combined, S. (G.) okinawense and S. (G.) tokarense are transferred from the S. ceylonicum species-group to the S. asakoae species-group.
    Matched MeSH terms: Larva/genetics; Pupa/genetics
  5. Wong Z, Ong EBB
    Arch Microbiol, 2024 Jun 15;206(7):303.
    PMID: 38878203 DOI: 10.1007/s00203-024-04023-2
    Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
    Matched MeSH terms: Bacterial Proteins/genetics; Schizosaccharomyces/genetics
  6. Zhang Y, Yuan Y, Zhang M, Yu X, Qiu B, Wu F, et al.
    BMC Biol, 2024 Nov 07;22(1):255.
    PMID: 39511558 DOI: 10.1186/s12915-024-02054-1
    BACKGROUND: Evolutionary adaptation drives organismal adjustments to environmental pressures, exemplified in the diverse morphological and ecological adaptations seen in Decapoda crustaceans, particularly brachyuran crabs. Crabs thrive in diverse ecosystems, from coral reefs to hydrothermal vents and terrestrial habitats. Despite their ecological importance, the genetic mechanisms underpinning their developmental processes, reproductive strategies, and nutrient acquisition remain poorly understood.

    RESULTS: Here, we report a comprehensive genomic analysis of the green mud crab Scylla paramamosain using ultralong sequencing technologies, achieving a high-quality chromosome-level assembly. The refined 1.21 Gb genome, with an impressive contig N50 of 11.45 Mb, offers a valuable genomic resource. The genome exhibits 33,662 protein-coding genes, enriched in various pathways related to development and environmental adaptation. Gene family analysis shows expansion in development-related pathways and contraction in metabolic pathways, indicating niche adaptations. Notably, investigation into Hox gene regulation sheds light on their role in pleopod development, with the Abd-A gene identified as a linchpin. Post-transcriptional regulation involving novel-miR1317 negatively regulates Abd-A levels. Furthermore, the potential role of fru gene in ovarian development and the identification of novel-miR35 as a regulator of Spfru2 add complexity to gene regulatory networks. Comparative functional analysis across Decapoda species reveals neo-functionalization of the elovl6 gene in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting its importance in environmental adaptation.

    CONCLUSIONS: Our findings shed light on various aspects of crab biology, including genome sequencing, assembly, and annotation, as well as gene family expansion, contraction, and regulatory mechanisms governing crucial developmental processes such as metamorphosis, reproductive strategies, and fatty acid metabolism.

    Matched MeSH terms: Adaptation, Physiological/genetics; Chromosomes/genetics
  7. Gan CP, Lee BKB, Lau SH, Kallarakkal TG, Zaini ZM, Lye BKW, et al.
    Front Immunol, 2022;13:954567.
    PMID: 36119104 DOI: 10.3389/fimmu.2022.954567
    Oral potentially malignant disorders (OPMD) are precursors of oral squamous cell carcinoma (OSCC), and the presence of oral epithelial dysplasia (OED) in OPMD confers an increased risk of malignant transformation. Emerging evidence has indicated a role for the immune system in OPMD disease progression; however, the underlying immune mechanisms remain elusive. In this study, we used immune signatures established from cancer to delineate the immune profiles of moderate and severe OED, which are considered high-risk OPMD. We demonstrated that moderate and severe OEDs exhibit high lymphocyte infiltration and upregulation of genes involved in both immune surveillance (major histocompatibility complex-I, T cells, B cells and cytolytic activity) and immune suppression (immune checkpoints, T regulatory cells, and tumor-associated macrophages). Notably, we identified three distinct subtypes of moderate and severe OED: immune cytotoxic, non-cytotoxic and non-immune reactive. Active immune surveillance is present in the immune cytotoxic subtype, whereas the non-cytotoxic subtype lacks CD8 immune cytotoxic response. The non-immune reactive subtype showed upregulation of genes involved in the stromal microenvironment and cell cycle. The lack of T cell infiltration and activation in the non-immune reactive subtype is due to the dysregulation of CTNNB1, PTEN and JAK2. This work suggests that moderate and severe OED that harbor the non-cytotoxic or non-immune reactive subtype are likely to progress to cancer. Overall, we showed that distinct immune responses are present in high-risk OPMD, and revealed targetable pathways that could lead to potential new approaches for non-surgical management of OED.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics; Tumor Microenvironment/genetics
  8. Lim SY, Tan AH, Ahmad-Annuar A, Okubadejo NU, Lohmann K, Morris HR, et al.
    Lancet Neurol, 2024 Dec;23(12):1267-1280.
    PMID: 39447588 DOI: 10.1016/S1474-4422(24)00378-8
    Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
    Matched MeSH terms: Genetic Predisposition to Disease/genetics; alpha-Synuclein/genetics
  9. Sohrabi M, Rafii MY, Hanafi MM, Siti Nor Akmar A, Latif MA
    ScientificWorldJournal, 2012;2012:416291.
    PMID: 22654604 DOI: 10.1100/2012/416291
    Genetic diversity is prerequisite for any crop improvement program as it helps in the development of superior recombinants. Fifty Malaysian upland rice accessions were evaluated for 12 growth traits, yield and yield components. All of the traits were significant and highly significant among the accessions. The higher magnitudes of genotypic and phenotypic coefficients of variation were recorded for flag leaf length-to-width ratio, spikelet fertility, and days to flowering. High heritability along with high genetic advance was registered for yield of plant, days to flowering, and flag leaf length-to-width ratio suggesting preponderance of additive gene action in the gene expression of these characters. Plant height showed highly significant positive correlation with most of the traits. According to UPGMA cluster analysis all accessions were clustered into six groups. Twelve morphological traits provided around 77% of total variation among the accessions.
    Matched MeSH terms: Oryza/genetics*; Genetic Variation/genetics*; Quantitative Trait Loci/genetics*
  10. Jamsari AF, Muchlisin ZA, Musri M, Siti Azizah MN
    Genet. Mol. Res., 2010;9(3):1836-43.
    PMID: 20845309 DOI: 10.4238/vol9-3gmr933
    Anabas testudineus (Anabantidae) is an important food fish in Southeast Asia. We analyzed the mitochondrial DNA control region sequence data to evaluate the genetic variability and population structure of this species. Sixty specimens were collected from four populations in Sumatra and two populations in Peninsular Malaysia. We found a very low level of genetic variability, with five of the six populations exhibiting total absence of genetic variation. Based on analysis of molecular variance, 84.72% of the total variation was among populations and 15.28% within populations. A geographical division based on FST values indicated highly significant genetic differentiation among populations from the four drainage systems: Aceh, Sumatra Utara, Pulau Pinang, and Terengganu (FST ranging from 0.633 to 1.000). No phylogeographic relationships among populations were detected, despite the generation of four distinct clades in a neighbor-joining phylogenetic tree.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; Genetics, Population; Perches/genetics*
  11. Konuma A, Tsumura Y, Lee CT, Lee SL, Okuda T
    Mol Ecol, 2000 Nov;9(11):1843-52.
    PMID: 11091320
    Pollen flow and population genetic structure among 30 potentially flowering individuals of Neobalanocarpus heimii, a tropical emergent tree, were investigated in a lowland tropical rainforest of Malaysia using microsatellite polymorphism. The 248 offspring in the vicinity of five reproductive trees of the 30 potentially flowering trees were used in paternity analysis for pollen-flow study. Four primer pairs, developed in different species of dipterocarps, were adopted to detect microsatellite polymorphism. Based upon microsatellite polymorphism, pollen flow and seed migration were detected. Pollen-flow events of more than 400 m were observed directly, based on paternity analysis in the study plot. The estimated average mating distance of the five reproductive trees was 524 m. This result suggests that reproduction of this species is mediated by a long-distance pollinator. The haplotypes of some offspring were not compatible with the nearest reproductive tree. Thus, the results suggest that some seeds are dispersed by a seed dispersal vector. Investigation of genetic structure showed significant and negative correlation of genetic relatedness and spatial distances between the 30 potentially flowering trees, but this correlation was weak. We suggest that long-distance gene flow and seed migration are responsible for the poorly developed genetic structure of this species.
    Matched MeSH terms: Genetics, Population; Pollen/genetics; Trees/genetics*
  12. Kulenthran A, Sivanesaratnam V
    Int J Gynaecol Obstet, 1988 Oct;27(2):289-91.
    PMID: 2903099
    Three sisters who developed recurrent uterine myomata from a very young age are presented. Despite repeated attempts at myomectomy, all three cases had hysterectomies ultimately. Complications encountered during surgery were severe hemorrhage, inadvertent injury to bladder and bowel in two patients and a rare complication of colonic-uteric-cutaneous fistula occurring post-operatively in one patient. Histology of the final hysterectomy specimens in two cases showed low grade leiomyosarcoma and cellular myoma, respectively.
    Matched MeSH terms: Leiomyoma/genetics*; Neoplasm Recurrence, Local/genetics*; Uterine Neoplasms/genetics*
  13. Chin YM, Hassan K
    Med J Malaysia, 1984 Jun;39(2):103-11.
    PMID: 6595495
    The common chromosome abnormalities that are encountered in the various types of leukemia are discussed here. Chromosome abnormalities in leukemia are non-random and certain chromosomal changes are now becoming recognised as being rather specific for certain leukemia types.
    Matched MeSH terms: Leukemia/genetics*; Leukemia, Lymphoid/genetics; Leukemia, Myeloid/genetics
  14. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Chinni SV, Ahmad MA
    Int J Biol Macromol, 2019 Jul 15;133:1288-1298.
    PMID: 31055112 DOI: 10.1016/j.ijbiomac.2019.05.003
    A report on the de novo Whole Genome Sequence (WGS) of Marinobacter litoralis SW-45, a moderately salt-tolerant bacterium isolated from the seawater in Malaysia is presented. The strain has a genome size of 3.45 Mb and is capable of producing halophilic lipase, protease and esterase enzymes. Computational prediction of non-coding RNA (ncRNA) genes in M. litoralis SW-45 was performed using standalone software known as the non-coding RNA characterization (nocoRNAc). In addition, a phylogenetic tree showing the evolutionary relationship between the strain and other members of the genus Marinobacter was constructed using 16SrRNA sequence information. A total of 385 ncRNA transcripts, 1124 terminator region, and 2350 Stress Induced Duplex Destabilization sites were predicted. The current WGS shotgun project has provided the relevant genetic information that may be useful for the strain's improvement studies. This manuscript gives the first description of M. litoralis with a complete genome.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics; RNA, Untranslated/genetics*; Marinobacter/genetics*
  15. Keong BP, Harikrishna JA
    Biochem Genet, 2012 Feb;50(1-2):135-45.
    PMID: 22089543 DOI: 10.1007/s10528-011-9479-8
    A preliminary screening was conducted on BC3F1 and BC4F1 backcross families developed from crossing Oryza sativa (MR219) and O. rufipogon (IRGC105491). Despite earlier results showing that O. rufipogon alleles (wild introgression) contributed to both number of panicles (qPPL-2) and tillers (qTPL-2) at loci RM250, RM208, and RM48 in line A20 of the BC2F2 population, we observed that wild introgression was lost at loci RM250 and RM208 but retained at locus RM48 in BC3F1 and BC4F1. Progeny tests conducted utilizing genotype and phenotype data on both BC4F1 and a reference population, BC2F7 (A20 line), did not show significant differences between groups having the MR219 allele and wild introgression at locus RM48. This suggests that there is no additive and transgressive effect of wild introgression in the BC3F1 and BC4F1 generated. The presence of wild introgression was largely due to gene contamination by cross-pollination during field breeding practices.
    Matched MeSH terms: Poaceae/genetics*; Oryza/genetics*; Pollination/genetics
  16. Sudo MPS, Yesudasan R, Neik TX, Masilamany D, Jayaraj J, Teo SS, et al.
    Plant Sci, 2021 Sep;310:110985.
    PMID: 34315600 DOI: 10.1016/j.plantsci.2021.110985
    Weedy rice (Oryza spp.) is a major nuisance to rice farmers from all over the world. Although the emergence of weedy rice in East Malaysia on the island of Borneo is very recent, the threat to rice yield has reached an alarming stage. Using 47,027 genotyping-by-sequencing (GBS)-derived SNPs and candidate gene analysis of the plant architecture domestication gene TAC1, we assessed the genetic variations and evolutionary origin of weedy rice in East Malaysia. Our findings revealed two major evolutionary paths for genetically distinct weedy rice types. Whilst the cultivar-like weedy rice are very likely to be the weedy descendant of local coexisting cultivars, the wild-like weedy rice appeared to have arisen through two possible routes: (i) accidental introduction from Peninsular Malaysia weedy rice populations, and (ii) weedy descendants of coexisting cultivars. The outcome of our genetic analyses supports the notion that Sabah cultivars and Peninsular Malaysia weedy rice are the potential progenitors of Sabah weedy rice. Similar TAC1 haplotypes were shared between Malaysian cultivated and weedy rice populations, which further supported the findings of our GBS-SNP analyses. These different strains of weedy rice have convergently evolved shared traits, such as seeds shattering and open tillers. A comparison with our previous simple-sequence repeat-based population genetic analyses highlights the strength of genome-wide SNPs, including detection of admixtures and low-level introgression events. These findings could inform better strategic management for controlling the spread of weedy rice in the region.
    Matched MeSH terms: Oryza/genetics*; Polymorphism, Single Nucleotide/genetics*; Gene Flow/genetics*
  17. Rosilawati R, Nabila R, Siti Futri Farahininajua F, Nazni WA, Lee HL
    Trop Biomed, 2019 Dec 01;36(4):855-865.
    PMID: 33597458
    The mechanism of insecticide resistance is traditionally attributed to detoxification enzymes, target site alteration, decreased penetration of insecticides and behavioural resistance. Other form of mechanisms, such as the role of protein(s) in resistance is unknown. In the present study, the protein profiling of both IMR-PSS strain (permethrin-selected) and IMR-LS strain (laboratory-susceptible) 24 hours post exposure period to permethrin was carried out via 1D-gel electrophoresis and liquid chromatography mass spectrometry (LC-MS/ MS). The bands which appeared in the gel of 1D-electrophoresis revealed an abundance of proteins. The band pattern of both strains looked macroscopically alike and differed only in band intensity. However, LC-MS/MS analysis revealed that the IMR-PSS strain produced extra 388 peptides that were not found in the IMR-LS strain, indicating that IMR-PSS strain reacted differently from IMR-LS strain as a result of persistent exposure to permethrin. Since the complex banding patterns of 1D-gel electrophoresis were difficult to interpret the significance of the protein difference between IMR-PSS and IMR-LS strain, hence LC-MS/MS analysis is ideally suited for better protein resolution and thus will allow more in-depth comparison of the complex pattern. The findings here provide the first preliminary evidence that insecticide resistance in mosquito induces up regulation of proteins that may be protective to mosquitoes against insecticide and proteins could be another mechanism that contributes to development of resistance.
    Matched MeSH terms: Aedes/genetics*; Insecticide Resistance/genetics*; Insect Proteins/genetics
  18. Lam SD, Babu MM, Lees J, Orengo CA
    PLoS Comput Biol, 2021 03;17(3):e1008708.
    PMID: 33651795 DOI: 10.1371/journal.pcbi.1008708
    Alternative splicing can expand the diversity of proteomes. Homologous mutually exclusive exons (MXEs) originate from the same ancestral exon and result in polypeptides with similar structural properties but altered sequence. Why would some genes switch homologous exons and what are their biological impact? Here, we analyse the extent of sequence, structural and functional variability in MXEs and report the first large scale, structure-based analysis of the biological impact of MXE events from different genomes. MXE-specific residues tend to map to single domains, are highly enriched in surface exposed residues and cluster at or near protein functional sites. Thus, MXE events are likely to maintain the protein fold, but alter specificity and selectivity of protein function. This comprehensive resource of MXE events and their annotations is available at: http://gene3d.biochem.ucl.ac.uk/mxemod/. These findings highlight how small, but significant changes at critical positions on a protein surface are exploited in evolution to alter function.
    Matched MeSH terms: Exons/genetics*; Genome/genetics*; Alternative Splicing/genetics*
  19. Yu CY, Ang GY, Chong TM, Chin PS, Ngeow YF, Yin WF, et al.
    J Antimicrob Chemother, 2017 04 01;72(4):1253-1255.
    PMID: 28031273 DOI: 10.1093/jac/dkw541
    Matched MeSH terms: Escherichia coli/genetics*; Genome, Bacterial/genetics*; Escherichia coli Proteins/genetics*
  20. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    Vet Parasitol, 2020 May;281:109102.
    PMID: 32289653 DOI: 10.1016/j.vetpar.2020.109102
    The present study investigated the genetic profile of the cosmopolitan cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) from Malaysia and the reference data available in the National Center for Biotechnology Information (NCBI) GenBank. A set of sequences of 100 Malaysian samples aligned as 550 characters of the cytochrome c oxidase subunit I (cox1) and 706 characters of the II (cox2) genes revealed ten haplotypes (A1-A10) and eight haplotypes (B1-B8), respectively. The concatenated sequences of cox1 and cox2 genes with a total of 1256 characters revealed 15 haplotypes (AB1-AB15). Analyses indicated that haplotype AB1 was the most frequent and the most widespread haplotype in Malaysia. Overall haplotype and nucleotide diversities of the concatenated sequences were 0.52909 and 0.00424, respectively, with moderate genetic differentiation (FST = 0.17522) and high gene flow (Nm = 1.18). The western population presented the highest genetic diversity (Hd = 0.78333, Pi = 0.01269, Nh = 9), whereas the southern population demonstrated the lowest diversity (Hd = 0.15667, Pi = 0.00019, Nh = 3). The concatenated sequences showed genetic distances ranged from 0.08 % to 4.39 %. There were three aberrant haplotypes in cox2 sequences that highly divergent, suggesting the presence of cryptic species or occurrence of introgression. In the global point of view, the aligned sequences of C. felis revealed 65 haplotypes (AA1-AA65) by the cox1 gene (n = 586), and 27 haplotypes (BB1-BB27) by the cox2 gene (n = 204). Mapping of the haplotype network showed that Malaysian C. felis possesses seven unique haplotypes in both genes with the common haplotypes demonstrated genetic affinity with C. felis from Southeast Asia for cox1 and South America for cox2. The topologies of cox1 and cox2 phylogenetic trees were concordant with relevant grouping pattern of haplotypes in the network but revealed two major lineages by which Malaysian haplotypes were closely related with haplotypes from the tropical region.
    Matched MeSH terms: Haplotypes/genetics; Genes, Insect/genetics*; Ctenocephalides/genetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links