This paper addresses the problems and threats associated with verification of integrity, proof of authenticity, tamper detection, and copyright protection for digital-text content. Such issues were largely addressed in the literature for images, audio, and video, with only a few papers addressing the challenge of sensitive plain-text media under known constraints. Specifically, with text as the predominant online communication medium, it becomes crucial that techniques are deployed to protect such information. A number of digital-signature, hashing, and watermarking schemes have been proposed that essentially bind source data or embed invisible data in a cover media to achieve its goal. While many such complex schemes with resource redundancies are sufficient in offline and less-sensitive texts, this paper proposes a hybrid approach based on zero-watermarking and digital-signature-like manipulations for sensitive text documents in order to achieve content originality and integrity verification without physically modifying the cover text in anyway. The proposed algorithm was implemented and shown to be robust against undetected content modifications and is capable of confirming proof of originality whilst detecting and locating deliberate/nondeliberate tampering. Additionally, enhancements in resource utilisation and reduced redundancies were achieved in comparison to traditional encryption-based approaches. Finally, analysis and remarks are made about the current state of the art, and future research issues are discussed under the given constraints.
One of the main difficulties in designing online signature verification (OSV) system is to find the most distinctive features with high discriminating capabilities for the verification, particularly, with regard to the high variability which is inherent in genuine handwritten signatures, coupled with the possibility of skilled forgeries having close resemblance to the original counterparts. In this paper, we proposed a systematic approach to online signature verification through the use of multilayer perceptron (MLP) on a subset of principal component analysis (PCA) features. The proposed approach illustrates a feature selection technique on the usually discarded information from PCA computation, which can be significant in attaining reduced error rates. The experiment is performed using 4000 signature samples from SIGMA database, which yielded a false acceptance rate (FAR) of 7.4% and a false rejection rate (FRR) of 6.4%.
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.
Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.
This article attempts to investigate the various types of threats that exist in healthcare information systems (HIS). A study has been carried out in one of the government-supported hospitals in Malaysia.The hospital has been equipped with a Total Hospital Information System (THIS). The data collected were from three different departments, namely the Information Technology Department (ITD), the Medical Record Department (MRD), and the X-Ray Department, using in-depth structured interviews. The study identified 22 types of threats according to major threat categories based on ISO/IEC 27002 (ISO 27799:2008). The results show that the most critical threat for the THIS is power failure followed by acts of human error or failure and other technological factors. This research holds significant value in terms of providing a complete taxonomy of threat categories in HIS and also an important component in the risk analysis stage.
Authenticating medical images using watermarking techniques has become a very popular area of research, and some works in this area have been reported worldwide recently. Besides authentication, many data-hiding techniques have been proposed to conceal patient's data into medical images aiming to reduce the cost needed to store data and the time needed to transmit data when required. In this paper, we present a new hybrid watermarking scheme for DICOM images. In our scheme, two well-known techniques are combined to gain the advantages of both and fulfill the requirements of authentication and data hiding. The scheme divides the images into two parts, the region of interest (ROI) and the region of non-interest (RONI). Patient's data are embedded into ROI using a reversible technique based on difference expansion, while tamper detection and recovery data are embedded into RONI using a robust technique based on discrete wavelet transform. The experimental results show the ability of hiding patient's data with a very good visual quality, while ROI, the most important area for diagnosis, is retrieved exactly at the receiver side. The scheme also shows some robustness against certain levels of salt and pepper and cropping noise.
In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
Multiparty transactional frameworks--i.e. Electronic Data Interchange (EDI) or Health Level (HL) 7--often result in composite documents which can be accurately modelled using hyperlinked document-objects. The structural complexity arising from multiauthor involvement and transaction-specific sequencing would be poorly handled by conventional digital signature schemes based on a single evaluation of a one-way hash function and asymmetric cryptography. In this paper we outline the generation of structure-specific authentication hash-trees for the the authentication of transactional document-objects, followed by asymmetric signature generation on the hash-tree value. Server-side multi-client signature verification would probably constitute the single most compute-intensive task, hence the motivation for our usage of the Rabin signature protocol which results in significantly reduced verification workloads compared to the more commonly applied Rivest-Shamir-Adleman (RSA) protocol. Data privacy is handled via symmetric encryption of message traffic using session-specific keys obtained through key-negotiation mechanisms based on discrete-logarithm cryptography. Individual client-to-server channels can be secured using a double key-pair variation of Diffie-Hellman (DH) key negotiation, usage of which also enables bidirectional node authentication. The reciprocal server-to-client multicast channel is secured through Burmester-Desmedt (BD) key-negotiation which enjoys significant advantages over the usual multiparty extensions to the DH protocol. The implementation of hash-tree signatures and bi/multidirectional key negotiation results in a comprehensive cryptographic framework for multiparty document-objects satisfying both authentication and data privacy requirements.
In this paper, we present a Java-based framework for the processing, storage and delivery of Electronic Medical Records (EMR). The choice of Java as a developmental and operational environment ensures operability over a wide-range of client-side platforms, with our on-going work emphasising migration towards Extensible Markup Language (XML) capable Web browser clients. Telemedicine in support of womb-to-tomb healthcare as articulated by the Multimedia Supercorridor (MSC) Telemedicine initiative--which motivated this project--will require high-volume data exchange over an insecure public-access Wide Area Network (WAN), thereby requiring a hybrid cryptosystem with both symmetric and asymmetric components. Our prototype framework features a pre-transaction authentication and key negotiation sequence which can be readily modified for client-side environments ranging from Web browsers without local storage capability to workstations with serial connectivity to a tamper-proof device, and also for point-to-multipoint transaction processes.
Blockchain in healthcare applications requires robust security and privacy mechanism for high-level authentication, interoperability and medical records sharing to comply with the strict legal requirements of the Health Insurance Portability and Accountability Act of 1996. Blockchain technology in the healthcare industry has received considerable research attention in recent years. This study conducts a review to substantially analyse and map the research landscape of current technologies, mainly the use of blockchain in healthcare applications, into a coherent taxonomy. The present study systematically searches all relevant research articles on blockchain in healthcare applications in three accessible databases, namely, ScienceDirect, IEEE and Web of Science, by using the defined keywords 'blockchain', 'healthcare' and 'electronic health records' and their variations. The final set of collected articles related to the use of blockchain in healthcare application is divided into three categories. The first category includes articles (i.e. 43/58 scientific articles) that attempted to develop and design healthcare applications integrating blockchain, particularly those on new architecture, system designs, framework, scheme, model, platform, approach, protocol and algorithm. The second category includes studies (i.e., 6/58 scientific articles) that attempted to evaluate and analyse the adoption of blockchain in the healthcare system. Finally, the third category comprises review and survey articles (i.e., 6/58 scientific articles) related to the integration of blockchain into healthcare applications. The final articles for review are discussed on the basis of five aspects: (1) year of publication, (2) nationality of authors, (3) publishing house or journal, (4) purpose of using blockchain in health applications and the corresponding contributions and (5) problem types and proposed solutions. Additionally, this study provides identified motivations, open challenges and recommendations on the use of blockchain in healthcare applications. The current research contributes to the literature by providing a detailed review of feasible alternatives and identifying the research gaps. Accordingly, researchers and developers are provided with appealing opportunities to further develop decentralised healthcare applications through a comprehensive discussion of about the importance of blockchain and its integration into various healthcare applications.
The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
Localization of the wireless sensor network is a vital area acquiring an impressive research concern and called upon to expand more with the rising of its applications. As localization is gaining prominence in wireless sensor network, it is vulnerable to jamming attacks. Jamming attacks disrupt communication opportunity among the sender and receiver and deeply impact the localization process, leading to a huge error of the estimated sensor node position. Therefore, detection and elimination of jamming influence are absolutely indispensable. Range-based techniques especially Received Signal Strength (RSS) is facing severe impact of these attacks. This paper proposes algorithms based on Combination Multiple Frequency Multiple Power Localization (C-MFMPL) and Step Function Multiple Frequency Multiple Power Localization (SF-MFMPL). The algorithms have been tested in the presence of multiple types of jamming attacks including capture and replay, random and constant jammers over a log normal shadow fading propagation model. In order to overcome the impact of random and constant jammers, the proposed method uses two sets of frequencies shared by the implemented anchor nodes to obtain the averaged RSS readings all over the transmitted frequencies successfully. In addition, three stages of filters have been used to cope with the replayed beacons caused by the capture and replay jammers. In this paper the localization performance of the proposed algorithms for the ideal case which is defined by without the existence of the jamming attack are compared with the case of jamming attacks. The main contribution of this paper is to achieve robust localization performance in the presence of multiple jamming attacks under log normal shadow fading environment with a different simulation conditions and scenarios.
This study presents a systematic literature review of access control for electronic health record systems to protect patient's privacy. Articles from 2006 to 2016 were extracted from the ACM Digital Library, IEEE Xplore Digital Library, Science Direct, MEDLINE, and MetaPress using broad eligibility criteria, and chosen for inclusion based on analysis of ISO22600. Cryptographic standards and methods were left outside the scope of this review. Three broad classes of models are being actively investigated and developed: access control for electronic health records, access control for interoperability, and access control for risk analysis. Traditional role-based access control models are extended with spatial, temporal, probabilistic, dynamic, and semantic aspects to capture contextual information and provide granular access control. Maintenance of audit trails and facilities for overriding normal roles to allow full access in emergency cases are common features. Access privilege frameworks utilizing ontology-based knowledge representation for defining the rules have attracted considerable interest, due to the higher level of abstraction that makes it possible to model domain knowledge and validate access requests efficiently.
In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
The existing literatures highlights that the security is the primary factor which determines the adoption of Internet banking technology. The secondary information on Internet banking development in Malaysia shows a very slow growth rate. Hence, this study aims to study the banking customers perception towards security concern and Internet banking adoption through the information collected from 150 sample respondents. The data analysis reveals that the customers have much concern about security and privacy issue in adoption of Internet banking, whether the customers are adopted Internet banking or not. Hence, it infers that to popularize Internet banking system there is a need for improvement in security and privacy issue among the banking customers.
The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods.
This study aims to provide security solutions for implementing electronic medical records (EMRs). E-Health organizations could utilize the proposed method and implement recommended solutions in medical/health systems. Majority of the required security features of EMRs were noted. The methods used were tested against each of these security features. In implementing the system, the combination that satisfied all of the security features of EMRs was selected. Secure implementation and management of EMRs facilitate the safeguarding of the confidentiality, integrity, and availability of e-health organization systems. Health practitioners, patients, and visitors can use the information system facilities safely and with confidence anytime and anywhere. After critically reviewing security and data transmission methods, a new hybrid method was proposed to be implemented on EMR systems. This method will enhance the robustness, security, and integration of EMR systems. The hybrid of simple object access protocol/extensible markup language (XML) with advanced encryption standard and secure hash algorithm version 1 has achieved the security requirements of an EMR system with the capability of integrating with other systems through the design of XML messages.
Blockchain technology provides a tremendous opportunity to transform current personal health record (PHR) systems into a decentralised network infrastructure. However, such technology possesses some drawbacks, such as issues in privacy and storage capacity. Given its transparency and decentralised features, medical data are visible to everyone on the network and are inappropriate for certain medical applications. By contrast, storing vast medical data, such as patient medical history, laboratory tests, X-rays, and MRIs, significantly affect the repository storage of blockchain. This study bridges the gap between PHRs and blockchain technology by offloading the vast medical data into the InterPlanetary File System (IPFS) storage and establishing an enforced cryptographic authorisation and access control scheme for outsourced encrypted medical data. The access control scheme is constructed on the basis of the new lightweight cryptographic concept named smart contract-based attribute-based searchable encryption (SC-ABSE). This newly cryptographic primitive is developed by extending ciphertext-policy attribute-based encryption (CP-ABE) and searchable symmetric encryption (SSE) and by leveraging the technology of smart contracts to achieve the following: (1) efficient and secure fine-grained access control of outsourced encrypted data, (2) confidentiality of data by eliminating trusted private key generators, and (3) multikeyword searchable mechanism. Based on decisional bilinear Diffie-Hellman hardness assumptions (DBDH) and discrete logarithm (DL) problems, the rigorous security indistinguishability analysis indicates that SC-ABSE is secure against the chosen-keyword attack (CKA) and keyword secrecy (KS) in the standard model. In addition, user collusion attacks are prevented, and the tamper-proof resistance of data is ensured. Furthermore, security validation is verified by simulating a formal verification scenario using Automated Validation of Internet Security Protocols and Applications (AVISPA), thereby unveiling that SC-ABSE is resistant to man-in-the-middle (MIM) and replay attacks. The experimental analysis utilised real-world datasets to demonstrate the efficiency and utility of SC-ABSE in terms of computation overhead, storage cost and communication overhead. The proposed scheme is also designed and developed to evaluate throughput and latency transactions using a standard benchmark tool known as Caliper. Lastly, simulation results show that SC-ABSE has high throughput and low latency, with an ultimate increase in network life compared with traditional healthcare systems.
Successful cyber-attacks are caused by the exploitation of some vulnerabilities in the software and/or hardware that exist in systems deployed in premises or the cloud. Although hundreds of vulnerabilities are discovered every year, only a small fraction of them actually become exploited, thereby there exists a severe class imbalance between the number of exploited and non-exploited vulnerabilities. The open source national vulnerability database, the largest repository to index and maintain all known vulnerabilities, assigns a unique identifier to each vulnerability. Each registered vulnerability also gets a severity score based on the impact it might inflict upon if compromised. Recent research works showed that the cvss score is not the only factor to select a vulnerability for exploitation, and other attributes in the national vulnerability database can be effectively utilized as predictive feature to predict the most exploitable vulnerabilities. Since cybersecurity management is highly resource savvy, organizations such as cloud systems will benefit when the most likely exploitable vulnerabilities that exist in their system software or hardware can be predicted with as much accuracy and reliability as possible, to best utilize the available resources to fix those first. Various existing research works have developed vulnerability exploitation prediction models by addressing the existing class imbalance based on algorithmic and artificial data resampling techniques but still suffer greatly from the overfitting problem to the major class rendering them practically unreliable. In this research, we have designed a novel cost function feature to address the existing class imbalance. We also have utilized the available large text corpus in the extracted dataset to develop a custom-trained word vector that can better capture the context of the local text data for utilization as an embedded layer in neural networks. Our developed vulnerability exploitation prediction models powered by a novel cost function and custom-trained word vector have achieved very high overall performance metrics for accuracy, precision, recall, F1-Score and AUC score with values of 0.92, 0.89, 0.98, 0.94 and 0.97, respectively, thereby outperforming any existing models while successfully overcoming the existing overfitting problem for class imbalance.