The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.
Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.
This paper presents a numerical study of the thermal performance of fins mounted on the bottom wall of a horizontal channel and cooled with either pure water or an Al2O3-water nanofluid. The bottom wall of the channel is heated at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The results of the numerical simulation indicate that the heat transfer rate of fins is significantly affected by the Reynolds number (Re) and the thermal conductivity of the fins. The influence of the solid volume fraction on the increase of heat transfer is more noticeable at higher values of the Re.
Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.
The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil.
A new micro heat exchanger was analyzed using numerical formulation of conjugate heat transfer for single-phase fluid flow across copper microchannels. The flow across bent channels harnesses asymmetric laminar flow and dean vortices phenomena for heat transfer enhancement. The single-channel analysis was performed to select the bent channel aspect ratio by varying width and height between 35-300 μm for Reynolds number and base temperature magnitude range of 100-1000 and 320-370 K, respectively. The bent channel results demonstrate dean vortices phenomenon at the bend for Reynolds number of 500 and above. Thermal performance factor analysis shows an increase of 18% in comparison to straight channels of 200 μm width and height. Alumina nanoparticles at 1% and 3% concentration enhance the Nusselt number by an average of 10.4% and 23.7%, respectively, whereas zirconia enhances Nusselt number by 16% and 33.9% for same concentrations. On the other hand, thermal performance factor analysis shows a significant increase in pressure drop at high Reynolds number with 3% particle concentration. Using zirconia for nanofluid, Nusselt number of the bent multi-channel model is improved by an average of 18% for a 3% particle concentration as compared to bent channel with deionized water.
Heat pipes are widely used in various industries such as automotive, electronics, and many more. Heat pipes are used as cooling devices for electronic parts in machines that emit a large amount of heat, which can damage the devices. The heat pipes used in this investigation are loop heat pipes. These pipes can transport heat over a long distance and operate against gravity. The working fluid used in this investigation is nanofluid. Nanofluid is one of the types of working fluid that is considered to have better thermal performance than conventional fluids. Nanofluid is made of nanoparticles with base-fluid. This investigation studies the thermal performance of loop heat pipes using different types of nanofluids. Nanofluid fluids used in this study are diamond nanofluid, aluminium oxide nanofluid and silica oxide nanofluid. The effect of mass concentration of nanoparticles in the base-fluid is also studied. The results showed that as the mass concentration of nanofluids increased, the thermal resistance for diamond nanofluid and aluminium oxide nanofluid decreased, but the opposite occurred for silica oxide nanofluid but still better resultsthan pure water. This shows that diamond and aluminium oxide nanofluids shows better thermal conductivity as it has lower total thermal resistance and thermal enhancement rate compared to other nanofluids. Diamond nanofluid also had higher heat capacity than aluminium oxide nanofluid as it had a lower vapour line temperature reading.
Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical material for the development of diverse microelectromechanical systems (MEMS) application. In this article, we conducted a theoretical study concerning surface mode propagation, especially Rayleigh and Sezawa mode in the layered GaN/sapphire structure with the presence of various guiding layers. It is demonstrated that the increase in thickness of guiding layer will decrease the phase velocities of surface mode depending on the material properties of the layer. In addition, the Q-factor value indicating the resonance properties of surface mode appeared to be affected with the presence of fluid domain, particularly in the Rayleigh mode. Meanwhile, the peak for Sezawa mode shows the highest Q factor and is not altered by the presence of fluid. Based on these theoretical results using the finite element method, it could contribute to the development of a GaN-based device to generate surface acoustic wave, especially in Sezawa mode which could be useful in acoustophoresis, lab on-chip and microfluidics applications.
A well-known planting medium in soilless culture is a coconut based material famously known in Malaysia as cocopeat.
It is a viable ecologically friendly peat soil substitute for containerized crop production. The multipurpose growing media
had received much interest particularly in commercial applications. This study focused on the physical and hydraulic
characteristics of cocopeat perlite mixture as a growing media in containerized plant production. Perlite was added to
cocopeat at a ratio of 3 cocopeat: 1 perlite. Bulk density, particle density, porosity, particle size distribution, water holding
capacity, wettability and hydraulic conductivity of the media were evaluated. About 82.93% of the total particles were
in the range between 0.425 and 4 mm in diameter at a bulk density of 0.09 g/cm3
. Total porosity (79%) and wettability
improved with the incorporation of perlite to cocopeat. This study showed that water holding capacity was very high at
912.54% whereas the saturated hydraulic conductivity was low at 0.1 cm/s. The results showed that adding perlite to
cocopeat had improved the physical and hydraulic characteristics of the media.
Nowadays Silicone Rubber (SiR) is recommended in high voltage cable accessories fabrication as it offers excellent electrical and mechanical properties. Electrical tree is one of the phenomenon which contributes to the main factor of SiR insulation breakdown. Recently, a new approach has been applied in order to enhance the insulation strength properties by introducing nano filler in undoped material. Thus, this paper presents the influence of nano-alumina and halloysite nanoclay on electrical tree growth in SiR at 0, 1 vol%, 2 vol% and 3 vol% concentration. The electrical tree growth was investigated at 8kVrms after tree inception voltage (TIV) within 30 minutes under room temperature. The results show reductions of electrical tree growth speed and accumulate damage (%) up to 2 vol% nano-alumina and up to 3 vol% halloysite nanoclay. Nevertheless the presence of 3 vol% nano-alumina in SiR leads to the faster electrical tree growth rate and the worst accumulate damage within 1 minute of electrical tree growth process.
We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.
In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe₂O₄)x (x = 2, 3, 4, and 5) as strongly exchange-coupled nanosized ferrites were fabricated using a one-pot sol⁻gel combustion method (citrate sol-gel method). The X-ray diffraction (XRD) powder patterns of the products confirmed the occurrence of pure, exchange-coupled ferrites. Frequency dependencies of the microwave characteristics (MW) were investigated using a co-axial method. The non-linear behavior of the MW with the composition transformation may be due to different degrees of Fe ion oxidation on the spinel/hexaferrite grain boundaries and strong exchange coupling during the hard and soft phases.
Grog is an additive material that plays important roles in ceramic making. It improves the fabrication process of green bodies as well as the physical properties of fired bodies. Few low-cost materials and wastes have found their application as grog in recent years, thus encouraging the replacement of commercial grogs with cost-saving materials. Coal fly ash, a combustion waste produced by coal-fired power plant, has the potential to be converted into grog owing to its small particle sizes and high content of silica and alumina. In this study, grog was derived from coal fly ash and mixed with kaolin clay to produce ceramics. Effects of the grog addition on the resultant ceramics were investigated. It was found that, to a certain extent, the grog addition reduced the firing shrinkage and increased the total porosity of the ceramics. The dimensional stability of the ceramics at a firing temperature of 1200 °C was also not noticeably affected by the grog. However, the grog addition in general had negative effects on the biaxial flexural strength and refractoriness of the ceramics.
Indium antimonide nanowires were synthesized by electrochemical deposition using anodic aluminum oxide template in the presence of gold film as conductive layers. Field emission scanning electron microscopy and energy dispersive X-ray spectrometry measurements were carried out to investigate the effect of adhesive insulated tape covered below the conductive layer. Results showed that the anodic aluminum oxide template covered with insulating tapes had better morphology with less presence of overgrown rough film on the topside of the anodic aluminum oxide template and it exhibited a smoother nanowire sidewall as compared to the uncovered ones. Additionally, the unique properties of anodic aluminum oxide were controllable pore diameter with a narrow size distribution at some intervals. It was evident from the energy dispersive X-ray spectrum that the nanowires synthesized from the covered template condition exhibited better InSb composition and stoichiometric ratio compared to the uncovered template condition.
Kaempferia parviflora is an ethnomedicinally important plant. Conventional propagation of K. parviflora is hindered by slow growth rate, long dormancy periods and dual use of rhizomes for seeds as well as marketable produce. In our study, we developed a promising dual-phase micropropagation protocol to increase number of plantlets, survivability, biomass and quality plantlets for mass production. Multiple shoot regeneration was found most successful on Murashige and Skoog (MS) media supplemented with 35.52 μM N6-benzyladenine (BA) in terms of highest number of shoots (22.4 ± 1.84), leaves (29.27 ± 1.30), and roots (17.8 ± 1.72) per explant. High survivability was observed with an acclimatisation percentage of 100% in sterile perlite medium. This method was shown to be preferable compared to conventional propagation in terms of propagation time and number of plantlets. Regenerated in vitro plantlets were then successfully induced to form microrhizomes in MS media with an optimal concentration of 6% (w/v) sucrose. Increase in microrhizome biomass (35.7 ± 2.59 g per flask), number of microrhizomes (5.2 ± 0.78), shoots (8.5 ± 1.58) and roots (8.5 ± 1.58) were observed for this treatment. This investigation successfully highlights the manipulation of single factors in short time frame to produce a simple and efficient alternative propagation method for K. parviflora.
The present investigation deals with the development of ethanol-vapour-sensing materials coated with the semiconducting oxide TiO2. Thick films of anatase TiO2 were deposited using the sol-gel dip-coating technique on alumina substrates by conventional alkoxide sol and modified sol added with Degussa P-25 as the sensing medium. It was shown that crystallised TiO2 anatase was obtained at the annealing temperature of 500oC. The fabricated TiO2 sensors exhibited highest sensitivity at the sensing temperature of 350 ºC. Sensitivity towards the ethanol vapour was further increased with UV light effect. The enhancement of the sensitivity of the modified catalytic pellet can be explained by the crystallite of anatase TiO2 and the effect of the photocatalytic of TiO2. The high sensitivity of the TiO2 film deposited with modified sol revealed that the modified sol could be a new alternative in the development of a TiO2 ethanol sensor.
An air fin cooler system consists of a tube bundle that is used to cool the various processing fluids in process industries that utilizes air as a cooling medium. The said tubes failed when exposed to corrosive environment(s). Tubes located at the bottom row of the air fin cooler were corroded as a result of exposure to rain water, brought in by induced air when the wind blows. The tube material is A179 Carbon steel. Two tubes, namely Tube A and Tube B along with an aluminum fin in each tube were investigated. A leak was observed on tube A, probably due to Corrosion Under Deposit mechanism. A general corrosion attack was observed at tube B, and macroscopic analysis showed that the corrosion occurred along the grain boundaries, which consist of ferrite and pearlite. Microanalysis showed that the corrosion product on the outer surface of the tube consists of Fe, O, S and Cl elements. It is concluded that the humid environment contains corrosive elements such as S and Cl. EDAX analysis on the fin showed that the material is pure aluminum. However, the aluminum was corroded by galvanized corrosion and produced brittle Al2O3 as a result.
A study of wear behaviour on anodised PM aluminium matrix composites (AMC) reinforced with Saffil™ alumina short fibres was done. AMC was fabricated by powder metallurgy methods (PM) with using Al flake powders and Saffil™ alumina short fibres. AMC reinforced with 15 wt % Saffil¥ alumina short fibre was selected because it showed optimum mechanical and physical properties. Sulphuric acid anodising process was performed and the objective is to obtain suitable parameters of sulphuric acid concentration, anodising voltage and anodising time on MMC. The study of anodising process was carried out with various sulphuric acid concentrations (from 0 to 20 % volume), anodising voltage (10 V to 20 V) and anodising time (from 0 to 60 minutes) at room temperature. Scanning electron microscope (SEM) was used to investigate coating morphology and thickness. From the research, anodising voltage of 18 V and 15 % vol H2SO4 in anodising time of 60 minutes were suitable parameters for sulphuric acid anodising of this AMC. SEM showed the coating thickness around 20 Pm. From the reserch, it was found that H2SO4 anodising was able to give good coating to MMC.
A co-deposition of nickel-phosphorus-alumina (NiPA) composite coatings were obtained from an ordinary sulphate-based plating bath consisting of 5 g/l alumina (Al2O3) particles. The particles were dispersed by using mechanical agitation at 125 rpm. The presence of Ni3P and Al2O3 phases in the coatings was confirmed by XRD analysis. SEM/EDX results indicated that a smooth Ni3P coating was obtained and Al2O3 particles were embedded into the coating. Microscopic observation showed that the bonding between the Ni3P metal matrix and the Al2O3 ceramic particles was compact.