Displaying publications 41 - 60 of 108 in total

Abstract:
Sort:
  1. Misni N, Nor ZM, Ahmad R
    J Am Mosq Control Assoc, 2016 Jun;32(2):117-23.
    PMID: 27280349 DOI: 10.2987/moco-32-02-117-123.1
    Based on an ethnobotanical study on use for plant species against mosquito bites in the Kota Tinggi District, Johor State, Malaysia, 3 plants selected for study, Citrus aurantifolia (leaves), Citrus grandis (fruit peel), and Alpinia galanga (rhizome), were extracted using hydrodistillation to produce essential oils. These essential oils were then formulated as a lotion using a microencapsulation process and then tested for their repellent effect against Aedes aegypti. N,N-diethyl-m-toluamide (deet) was also prepared in the same formulation and tested for repellency as controls. Four commercial plant-based repellent (KAPS(®), MozAway(®), BioZ Natural(®), and Mosiquard(®)) also were incorporated in the bioassay for comparison purposes. Bioassays revealed that at 20% concentration all repellent formulations demonstrated complete protection for 2 h and >90% for 4 h post-application. The A. galanga-based formulation provided the greatest level of protection (98.91%), which extended for 4 h post-application and was not significantly different from deet at similar concentration. When compared with commercial plant-based repellents (KAPS(®), MozAway(®), and BioZ Natural(®)), the 3 lotion formulations showed significantly better protection against Ae. aegypti bites, providing >90% protection for 4 h. In conclusion, our 3 plant-based lotion formulations provided acceptable levels of protection against host-seeking Ae. aegypti and should be developed.
    Matched MeSH terms: Rhizome
  2. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Rhizome
  3. Syed FNN, Zakaria MH, Bujang JS, Christianus A
    Int J Food Sci, 2021;2021:8825970.
    PMID: 33553420 DOI: 10.1155/2021/8825970
    Several aquatic macrophytes such as Colocasia esculenta, Eleocharis dulcis, Nelumbo nucifera, Sagittaria sagittifolia, Trapa bispinosa, and Typha angustifolia possessed carbohydrate mainly in their storage and reproductive parts. Starch morphology, total starch, and amylose content of these six freshwater plant species were determined. Their functional properties, i.e., starch crystallinity, thermal properties, and rheological behaviour were assessed. Large starch granules were in N. nucifera rhizome (>15 μm), medium-sized was N. nucifera seed (8-18 μm), while the rest of the starches were small starch granules (<8 μm). Shapes of the starch granules varied from oval and irregular with centric hilum to elongated granules with the eccentric hilum. Eleocharis dulcis corm starch had significantly higher total starch content (90.87%), followed by corms of C. esculenta (82.35%) and S. sagittifolia (71.71%). Nelumbo nucifera seed starch had significantly higher amylose content (71.45%), followed by T. angustifolia pollen (36.47%). In comparison, the waxy starch was in N. nucifera rhizome (7.63%), T. bispinosa seed (8.83%), C. esculenta corm (10.61%), and T. angustifolia rhizome (13.51%). Higher resistant starch was observed mostly in rhizomes of N. nucifera (39.34%)>T. angustifolia (37.19%) and corm parts of E. dulcis (37.41%)>S. sagittifolia (35.09%) compared to seed and pollen starches. The XRD profiles of macrophytes starches displayed in all the corms and N. nucifera seed had A-type crystallinity. The T. bispinosa seed had CA-type, whereas the rest of the starches exhibited CB-type crystallinity. Waxy starches of C. esculenta corm had higher relative crystallinity (36.91%) and viscosity (46.2 mPa s) than regular starches. Based on thermal properties, high-amylose of N. nucifera seed and T. angustifolia pollen resulted in higher gelatinization enthalpy (19.93 and 18.66 J g-1, respectively). Starch properties showed equally good potential as commercial starches in starch-based food production based on their starch properties and functionality.
    Matched MeSH terms: Rhizome
  4. Hidayatulfathi O, Sallehuddin S, Ibrahim J
    Trop Biomed, 2004 Dec;21(2):61-7.
    PMID: 16493400
    The adulticidal activity of methanol extracts from three Malaysian plants namely Acorus calamus Linn., Litsea elliptica Blume and Piper aduncum Linn. against adult of Aedes aegypti (L.) were studied. Standard WHO bioassay tests were used to evaluate the effectiveness of these plant extracts. The hexane fraction from methanol extract of Acorus calamus rhizome was the most effective, exhibiting LC50 and LC90 values of 0.04 mgcm(-2) and 0.09 mgcm(-2) respectively. For L. elliptica, the methanol fraction also displayed good adulticidal property with the LC50 and LC90 values of 0.11 mgcm(-2) and 6.08 mgcm(-2) respectively. It is found that hexane fraction of the P. aduncum crude extract was the least effective among the three plants showing LC50 and LC90 values of 0.20 mgcm(-2) and 5.32 mgcm(-2), respectively. However, although A. calamus showed lowest LC values, the LT50 results indicated that the methanol fraction of L. elliptica was most potent extract among the extracts tested.
    Matched MeSH terms: Rhizome
  5. Norina Abdullah, Nur Zakiah Mohd Saat, Hazlin Abu Hasan, Siti Balkis Budin, Sazlina Kamaralzaman
    MyJurnal
    The protective effect of the ethanol extract of the rhizome of Zingiber officinale Roscoe on acute hepatotoxicity induced by paracetamol (1000 mg/kg) was studied in plasma and hepatic tissue samples obtained from male Sprague-Dawley rats. The ethanol extract was given in oral doses of 200 mg/kg and 300 mg/kg to the rats at 0, 4 and 8 hrs after paracetamol was given orally. The plasma and liver of the rats were subjected to biochemical analysis 24 hrs after hepatotoxicity was induced to determine the levels of superoxide dismutase(SOD), malonaldehyde (MDA) and aspartate transaminase (AST). The results were compared to the rats which were given the antidote N-acetylcysteine (NAC) (500 mg/kg) at 0, 4 and 8 hrs after the paracetamol dose. The results showed that at 200 mg/kg the extract reduced the plasma levels of SOD significantly (p < 0.05) while at a higher dose of 300 mg/kg it reduced plasma SOD, hepatic MDA, serum AST and increased the levels of plasma proteins significantly (p < 0.05). In conclusion, the ethanol extract of Z. officinale showed protective effect against paracetamol induced hepatotoxicity at both dose levels and the protective effect was better at the higher dose.
    Matched MeSH terms: Rhizome
  6. Nadia, Hisamuddin, Nadhirah, Kamarudin, Mohd Roslan, Sulaiman, Wan Mastura, Shaik Mossadeq
    MyJurnal
    Zingiberaceae is one of the largest plant families consisting of rhizomes that are commonly used as spice in soups and curries as well as alternative medications in folklore medicine. Zingiber officinale or commonly known as ginger is extensively employed in Asian, Ayurvedic, Chinese, and Arabian folklore medicine for the treatment of pain, inflammation and various spasm-associated gastric ailments. The past few decades saw rapid advancements in the extraction process of ginger bioactive constituents and validation of their corresponding pharmacodynamic and pharmacotherapeutic activities, and biological properties in vivo and in vitro. Results reported from several biological studies on ginger showed that extracts and compounds from this tuberous rhizome exhibit antiemetic, anticancer, antipyretic, antispasmogenic and antimicrobial activities. This article reviews the effect of Zingiber officinale and its bioactive constituents on isolated organ preparations from several species of animals in view of its potential use as an alternative treatment for muscle spasms and common gastric ailments.
    Matched MeSH terms: Rhizome
  7. Sanimah Simoh, Sew YS, Fazri Abd Rahim, Muhammad Aizuddin Ahmad, Alizah Zainal
    Sains Malaysiana, 2018;47:3031-3041.
    A comparative analysis of metabolites from different parts of Curcuma aeruginosa, i.e. leaves, stems, adventitious
    roots and rhizomes was performed by GC-MS/MS coupled with multivariate statistical analysis. The GC-MS/MS analysis
    confirmed the occurrence of 26 metabolites belonged to terpenoids in almost all the samples. The Principal Component
    Analysis (PCA) indicated that there was a clear distinction between rhizomes and other plant parts, i.e. stems, leaves,
    and adventitious roots that could be explained by relatively higher contents of terpenoids including curzerene, alphafarnesen, furanocoumarin, velleral, germacrone cineole, borneol, beta- and gamma- elemene and methenolone. The
    results of Hierarchical Clustering Analyses (HCA) corresponded with the PCA results where many terpenoids found
    abundantly high in rhizome were clustered together. This was supported by the Pearson correlation analysis that
    showed a significantly good relationship between those terpenoids. The adventitious roots demonstrated the strongest
    antioxidant activity as compared to the other plant parts which could be attributed to its highest Total Phenolic
    Contents (TPC). Total phenolic contents of all the plant parts were positively correlated with their antioxidant activities
    which indicate that phenolic compounds may play a role in the overall antioxidant activities of the plants. The results
    of the study highlighted the potential of this underexploited Curcuma species which could serve as a new source of
    important phytochemicals and natural antioxidant that could be incorporated in functional foods and nutraceuticals.
    In addition, chemical and biological evidence shown in the present work has rationalised the different uses of various
    plant parts of C. aeruginosa.
    Matched MeSH terms: Rhizome
  8. Kan CY, H'ng JX, Goh A, Smales F, Tan EL, Zhang S, et al.
    Int Dent J, 2023 Feb;73(1):63-70.
    PMID: 35725589 DOI: 10.1016/j.identj.2022.04.011
    OBJECTIVE: This study aimed to evaluate the effect of methanol (70% v/v), ethanol (80% v/v), dimethyl sulfoxide (DMSO; 100% v/v) extracts of ginger rhizome (GR), and 6-shogaol on the pilocarpine-stimulated salivary flow rate in C57BL/6 mice.

    METHODS: Three extracts of ginger (Zingiber officinale) rhizome prepared by maceration using the respective solvents and 6-shogoal were reconstituted in normal saline with 0.2% DMSO. Thirty C57BL/6 15-week-old mice were divided into 5 groups: Group 1, saline; Group 2, 70% methanol extract; Group 3, 80% ethanol extract; Group 4, 100% DMSO extract; and Group 5, 6-shogaol. The baseline pilocarpine-stimulated salivary flow rate was measured at the age of 15 weeks (15th week), and treatment solutions were administered by intraperitoneal injection from the 16th to 18th week. The stimulated salivary flow rate during treatment weeks was recorded for each group, and its difference with baseline was analysed using paired-sample t test. The change in salivary flow rate between the treatment groups and the control group was analysed using one-way analysis of variance.

    RESULTS: Groups 2, 3, 4, and 5 showed a significant increase in salivary flow rate when compared to baseline (P < .05). The increase in salivary flow rate in all 4 treatment groups was significant when compared to the control group (P < .05). Group 4 produced the highest increase in salivary flow rate; however, the differences amongst the treatment groups did not reach statistical significance (P > .05).

    CONCLUSIONS: All GR extracts (70% methanol, 80% ethanol, 100% DMSO) and 6-shogaol were equally effective in increasing the pilocarpine-stimulated salivary flow rate in C57BL/6 mice when administered systemically as a sustained dose for 3 weeks.

    Matched MeSH terms: Rhizome
  9. Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA
    PMID: 30949217 DOI: 10.1155/2019/3807207
    Curcuma longa L. is a rhizome plant often used as traditional medicinal preparations in Southeast Asia. The dried powder is commonly known as cure-all herbal medicine with a wider spectrum of pharmaceutical activities. In spite of the widely reported therapeutic applications of C. longa, research on its safety and teratogenic effects on zebrafish embryos and larvae is still limited. Hence, this research aimed to assess the toxicity of C. longa extract on zebrafish. Using a reflux flask, methanol extract of C. longa was extracted and the identification and quantification of total flavonoids were carried out with HPLC. Twelve fertilized embryos were selected to test the embryotoxicity and teratogenicity at different concentration points. The embryos were exposed to the extract in the E3M medium while the control was only exposed to E3M and different developmental endpoints were recorded with the therapeutic index calculated using the ratio of LC50/EC50. C. longa extract was detected to be highly rich in flavonoids with catechin, epicatechin, and naringenin as the 3 most abundant with concentrations of 3,531.34, 688.70, and 523.83μg/mL, respectively. The toxicity effects were discovered to be dose-dependent at dosage above 62.50μg/mL, while, at 125.0μg/mL, mortality of embryos was observed and physical body deformities of larvae were recorded among the hatched embryos at higher concentrations. Teratogenic effect of the extract was severe at higher concentrations producing physical body deformities such as kink tail, bend trunk, and enlarged yolk sac edema. Finally, the therapeutic index (TI) values calculated were approximately the same for different concentration points tested. Overall, the result revealed that plants having therapeutic potential could also pose threats when consumed at higher doses especially on the embryos. Therefore, detailed toxicity analysis should be carried out on medicinal plants to ascertain their safety on the embryos and its development.
    Matched MeSH terms: Rhizome
  10. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
    Matched MeSH terms: Rhizome/chemistry*
  11. Vairappan CS, Nagappan T, Palaniveloo K
    Nat Prod Commun, 2012 Feb;7(2):239-42.
    PMID: 22474969
    Essential oils obtained by hydrodistillation from the rhizomes of Etlingera pyramidosphaera (K. Schum.) R. M. Sm, E. megalocheilos (Griff.) A.D. Poulsen, comb. nov., E. coccinea (Blume) S. Sakai & Nagam, E. elatior (Jack) R. M. Sm, and E. brevilabrum (Valeton) R. M. Sm were analyzed by GCMS. The highest oil yield was obtained from E. pyramidosphaera (0.45%), followed by E. elatior (0.38%), E. coccinea (0.30%), E. brevilabrum (0.28%) and E. megalocheilos (0.25%). The major constituents of the essential oils were oxygenated monoterpenes, followed by sesquiterpenes, oxygenated sesquiterpenes, oxygenated diterpenes and diterpenes. The essential oils from E. pyramidosphaera and E. brevilabrum exhibited the best cytotoxicity against MCF 7 (LC50: 7.5 +/- 0.5 mg mL(-1)) and HL 60 (LC50: 5.0 mg mL(-1)), respectively. Strong inhibition was also observed for the essential oils of E. coccinea and E. megalocheilos against Staphylococcus aureus (MIC: 8.0 +/- 0.5 mg mL(-1), and 5.0 +/- 0.5 mg mL(-1)) and Streptococcus pyrogenes (MIC: 6.0 +/- 0.5 mg mL(-1) and 8.0 +/- 0.5 mg mL(-1)).
    Matched MeSH terms: Rhizome/chemistry
  12. Malek SN, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber JF, et al.
    Molecules, 2011 May 31;16(6):4539-48.
    PMID: 21629182 DOI: 10.3390/molecules16064539
    Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
    Matched MeSH terms: Rhizome/chemistry*
  13. Devaraj S, Esfahani AS, Ismail S, Ramanathan S, Yam MF
    Molecules, 2010 Apr;15(4):2925-34.
    PMID: 20428088 DOI: 10.3390/molecules15042925
    Ethanolic extract of Curcuma xanthorrhiza was used to evaluate the analgesic and toxicity effects in vivo. The extract was standardized using GC-MS, which showed that 1 mg of Curcuma xanthorrhiza ethanolic extract contains 0.1238 mg of xanthorrhizol. The analgesic activity was studied in rats using three different models, namely the hot plate test, tail flick test and formalin-induced pain test. The acute oral toxicity was examined by the oral administration of standardized Curcuma xanthorrhiza ethanolic extract in mice at doses ranging from 300-5,000 mg/kg and observation for 14 days. Standardized Curcuma xanthorrhiza ethanolic extract did not show significant analgesic effect in the hot plate and tail flick tests. However, in the formalin-induced pain test, Curcuma xanthorrhiza ethanolic extract significantly (P < 0.05) suppressed the paw licking time of rats in both early and late phases at doses 200 and 400 mg/kg of the extract, respectively. In the acute oral toxicity study, Curcuma xanthorrhiza ethanolic extract did not show any toxic effects in mice at 5 g/kg. These experimental results suggest that the standardized Curcuma xanthorrhiza ethanolic extract showed peripheral and central antinociceptive activity associated with neurogenic pain as well as a relative absence of toxic effects which could compromise the medicinal use of this plant in folk medicine.
    Matched MeSH terms: Rhizome/chemistry*
  14. Tee HC, Seng CE, Noor AM, Lim PE
    Sci Total Environ, 2009 May 15;407(11):3563-71.
    PMID: 19272632 DOI: 10.1016/j.scitotenv.2009.02.017
    This study aims to compare the performance of planted and unplanted constructed wetlands with gravel- and raw rice husk-based media for phenol and nitrogen removal. Four laboratory-scale horizontal subsurface-flow constructed wetland units, two of which planted with cattail (Typha latifolia) were operated outdoors. The units were operated at a nominal hydraulic retention time of 7 days and fed with domestic wastewater spiked with phenol concentration at 300 mg/L for 74 days and then at 500 mg/L for 198 days. The results show that planted wetland units performed better than the unplanted ones in the removal and mineralization of phenol. This was explained by the creation of more micro-aerobic zones in the root zone of the wetland plants which allow a faster rate of phenol biodegradation, and the phenol uptake by plants. The better performance of the rice husk-based planted wetland compared to that of the gravel-based planted wetland in phenol removal could be explained by the observation that more rhizomes were established in the rice husk-based wetland unit thus creating more micro-aerobic zones for phenol degradation. The role of rice husk as an adsorbent in phenol removal was considered not of importance.
    Matched MeSH terms: Rhizome/growth & development
  15. Jantan I, Raweh SM, Sirat HM, Jamil S, Mohd Yasin YH, Jalil J, et al.
    Phytomedicine, 2008 Apr;15(4):306-9.
    PMID: 17913483
    Twelve compounds isolated from Alpinia mutica Roxb., Kaempferia rotunda Linn., Curcuma xanthorhiza Roxb., Curcuma aromatica Valeton and Zingiber zerumbet Smith (Family: Zingiberaceae) and three synthesized derivatives of xanthorrhizol were evaluated for their ability to inhibit arachidonic acid- (AA), collagen- and ADP-induced platelet aggregation in human whole blood. Antiplatelet activity of the compounds was measured in vitro by the Chrono Log whole blood aggregometer using an electrical impedance method. Among the compounds tested, curcumin from C. aromatica, cardamonin, pinocembrine and 5,6-dehydrokawain from A. mutica and 3-deacetylcrotepoxide from K. rotunda showed strong inhibition on platelet aggregation induced by AA with IC(50) values of less than 84 microM. Curcumin was the most effective antiplatelet compound as it inhibited AA-, collagen- and ADP-induced platelet aggregation with IC(50) values of 37.5, 60.9 and 45.7 microM, respectively.
    Matched MeSH terms: Rhizome/chemistry
  16. Othman R, Ibrahim H, Mohd MA, Mustafa MR, Awang K
    Phytomedicine, 2006 Jan;13(1-2):61-6.
    PMID: 16360934
    Bioassay-guided fractionation was performed on a crude dichloromethane extract of Kaempferia galanga L. using chromatography techniques. Screening of the extract for biological activity started with the brine shrimp lethality bioassay, followed by the study of its antihypertensive activity on anaesthetized rats, which involved monitoring of the extract's effect on mean arterial blood pressure. The components of the fractions obtained from the separation procedures were analyzed using gas chromatography (GC). The yield of the CH(2)Cl(2) extract was 0.29% of the crude plant extract. Analysis of the data for brine shrimp lethality test using the Finney computer program showed that this extract exhibited potent bioactivity with an ED(50) value of 7.92+/-0.13 microgml(-1). Intravenous administration of the extract induced a dose-related reduction of basal mean arterial pressure (MAP) (130+/-5 mmHg) in the anaesthetized rat, with maximal effects seen after 5-10 min of injection. The gas chromatogram showed that the common compound in the active fractions obtained from the bioassay-guided fractionation of the CH(2)Cl(2) extract was ethyl cinnamate. This vasorelaxant active compound, ethyl cinnamate, was isolated as a colorless oil. Ethyl p-methoxycinnamic acid was also isolated as white needles but did not exhibit any relaxant effect on the precontracted thoracic rat aorta.
    Matched MeSH terms: Rhizome/chemistry
  17. Aziz AN, Ibrahim H, Rosmy Syamsir D, Mohtar M, Vejayan J, Awang K
    J Ethnopharmacol, 2013 Feb 13;145(3):798-802.
    PMID: 23266278 DOI: 10.1016/j.jep.2012.12.024
    The rhizome of Alpinia conchigerahas been used as a condiment in the northern states of Peninsular Malaysia and occasionally in folk medicine in the east coast to treat fungal infections. In some states of Peninsular Malaysia, the rhizomes are consumed as a post-partum medicine and the young shoots are prepared into a vegetable dish. This study aimed to investigate the chemical constituents of the pseudostems and rhizomes of Malaysian Alpinia conchigera and to evaluate the antimicrobial activity of the dichloromethane (DCM) extracts of the pseudostems, rhizomes and the isolated compounds against three selected fungi and five strains of Staphylococcus aureus.
    Matched MeSH terms: Rhizome/chemistry
  18. Mohamad H, Lajis NH, Abas F, Ali AM, Sukari MA, Kikuzaki H, et al.
    J Nat Prod, 2005 Feb;68(2):285-8.
    PMID: 15730265
    Phytochemical studies on the rhizomes of Etlingera elatior have resulted in the isolation of 1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone (1), demethoxycurcumin (2), 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (3), 16-hydroxylabda-8(17),11,13-trien-15,16-olide (4), stigmast-4-en-3-one, stigmast-4-ene-3,6-dione, stigmast-4-en-6beta-ol-3-one, and 5alpha,8alpha-epidioxyergosta-6,22-dien-3beta-ol. Compounds 1 and 4 are new, and their structures were elucidated by analysis of spectroscopic data. Diarylheptanoids 1-3 were found to inhibit lipid peroxidation in a more potent manner than alpha-tocopherol.
    Matched MeSH terms: Rhizome/chemistry
  19. Sivasothy Y, Hadi AH, Mohamad K, Leong KH, Ibrahim H, Sulaiman SF, et al.
    Bioorg Med Chem Lett, 2012 Jun 1;22(11):3831-6.
    PMID: 22546674 DOI: 10.1016/j.bmcl.2012.02.064
    The rhizomes of Zingiber spectabile yielded a new dimeric flavonol glycoside for which the name kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside-(I-6,II-8)-kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside; spectaflavoside A (1) was proposed, along with kaempferol and its four acetylrhamnosides (2-6), demethoxycurcumin (7) and curcumin (8). The structure of spectaflavoside A was elucidated by spectroscopic methods including, 1D and 2D NMR techniques. This is the first report on the occurrence of a dimeric flavonol glycoside in the Zingiberaceae and the second in nature. Spectaflavoside A was found to be a potent iron chelating agent.
    Matched MeSH terms: Rhizome/chemistry
  20. Sok SP, Arshad NM, Azmi MN, Awang K, Ozpolat B, Hasima Nagoor N
    PLoS One, 2017;12(2):e0171329.
    PMID: 28158287 DOI: 10.1371/journal.pone.0171329
    Autophagy plays a role in deciding the fate of cells by inducing either survival or death. 1'S-1-acetoxychavicol acetate (ACA) is a phenylpropanoid isolated from rhizomes of Alpinia conchigera and has been reported previously on its apoptotic effects on various cancers. However, the effect of ACA on autophagy remains ambiguous. The aims of this study were to investigate the autophagy-inducing ability of ACA in human non-small cell lung cancer (NSCLC), and to determine its role as pro-survival or pro-death mechanism. Cell viability assay was conducted using MTT. The effect of autophagy was assessed by acridine orange staining, GFP-LC3 punctate formation assay, and protein level were analysed using western blot. Annexin V-FITC/PI staining was performed to detect percentage of cells undergoing apoptosis by using flow cytometry. ACA inhibits the cell viability and induced formation of cytoplasmic vacuoles in NSCLC cells. Acidic vesicular organelles and GFP-LC3 punctate formation were increased in response to ACA exposure in A549 and SK-LU-1 cell lines; implying occurrence of autophagy. In western blot, accumulation of LC3-II accompanied by degradation of p62 was observed, which further confirmed the full flux of autophagy induction by ACA. The reduction of Beclin-1 upon ACA treatment indicated the Beclin-1-independent autophagy pathway. An early autophagy inhibitor, 3-methyaldenine (3-MA), failed to suppress the autophagy triggered by ACA; validating the existence of Beclin-1-independent autophagy. Silencing of LC3-II using short interfering RNA (siRNA) abolished the autophagy effects, enhancing the cytotoxicity of ACA through apoptosis. This proposed ACA triggered a pro-survival autophagy in NSCLC cells. Consistently, co-treatment with lysosomal inhibitor, chloroquine (CQ), exerted a synergistic effect resulting in apoptosis. Our findings suggested ACA induced pro-survival autophagy through Beclin-1-independent pathway in NSCLC. Hence, targeting autophagy pathway using autophagy inhibitor such as CQ represented a novel promising approach to potentiate the cytotoxicity of ACA through apoptosis in NSCLC.
    Matched MeSH terms: Rhizome/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links