In this study, chitosan/polyvinyl alcohol/TiO2 nanofiber was fabricated via electrospinning at a pump rate of 1.5 mL/h and voltage 6 kV. Field-emission scanning electron microscopic images showed bead free finer nanofiber. Fourier transform infrared spectra proved the formation of strong bond among chitosan, polyvinyl alcohol and TiO2. X-ray powder diffraction showed that TiO2 became amorphous in the composite nanofiber. Toughness and thermal stability of the chitosan/PVA nanofibrous membrane was increased with addition TiO2. The chitosan/PVA/TiO2 nanofibrous membrane was stable at basic medium. But degraded in acidic and water medium after 93 and 162 h, respectively. The adsorption mechanism of congo red obeyed the Langmuir isotherm model. On the other hand, adsorption characteristic of methyl orange fitted well with both Langmuir and Freundlich isotherm models. The maximum adsorption capacity of the resulting membrane for congo red and methyl orange is 131 and 314 mg/g, respectively. However, a high dose of adsorbent was required for congo red.
In recent years, the utilisation of endophytes has emerged as a promising biological treatment technology for the degradation of plastic wastes such as biodegradation of synthetic plastics. This study, therefore, aimed to explore and extensively screen endophytic fungi (from selected plants) for efficient in vitro polyvinyl alcohol (PVA) biodegradation. In total, 76 endophytic fungi were isolated and cultivated on a PVA screening agar medium. Among these fungi, 10 isolates showed potential and were subsequently identified based on phenotypical characteristics, ITS ribosomal gene sequences, and phylogenetic analyses. Four strains exhibited a maximum level of PVA-degradation in the liquid medium when cultivated for 10 days at 28 °C and 150 rpm. These strains showed varied PVA removal rates of 81% (Penicillium brevicompactum OVR-5), 67% (Talaromyces verruculosus PRL-2), 52% (P. polonicum BJL-9), and 41% (Aspergillus tubingensis BJR-6) respectively. The most promising PVA biodegradation isolate 'OVR-5', with an optimal pH at 7.0 and optimal temperature at 30 °C, produced lipase, manganese peroxidase, and laccase enzymes. Based on analyses of its metabolic intermediates, as identified with GC-MS, we proposed the potential PVA degradation pathway of OVR-5. Biodegradation results were confirmed through scanning electron microscopy and Fourier transform infrared spectroscopy. This study provides the first report on an endophytic P. brevicompactum strain (associated with Orychophragmus violaceus) that has a great ability for PVA degradation providing more insight on potential fungus-based applications in plastic waste degradation.
The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.
The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.
Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.
Transforming growth factor-beta 1 (TGF-β1) has been reported to promote chondrogenic differentiation and proliferation in the multipotent stromal cell (MSCs), and the transforming growth factor-beta 3 (TGF-β3) tends to be exclusively in promoting cell differentiation alone. The objective of this study was to determine the effect of TGF-β1 and -β3 on the MSCs chondrogenic differentiation on the poly (vinyl alcohol)-chitosan-poly (ethylene glycol) (PVA-NOCC-PEG) scaffold, compared with that of monolayer and pellet cultures. In this study, P2 rabbit bone marrow-derived MSCs were seeded either on the untreated six-well plate (for monolayer culture) or onto the PVA-NOCC-PEG scaffold or cultured as a pellet culture. The cultures were maintained in a chemically defined serum-free medium supplemented with 10 ng/mL of either TGF-β1 or TGF-β3. Cell viability assay, biochemical assay, and real-time polymerase chain reaction were performed to determine the net effect of cell proliferation and chondrogenic differentiation of each of the growth factors. The results showed that the PVA-NOCC-PEG scaffold enhanced MSCs cell proliferation from day 12 to 30 (p 0.05). In terms of chondrogenic differentiation, the PVA-NOCC-PEG scaffold augmented the GAGs secretion in MSCs and the mRNA expression levels of Sox9, Col2a1, Acan, and Comp were elevated (p 0.05). In conclusion, TGF-β1 and TGF-β3 enhanced the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold; however, there was no significant difference between the effect of TGF-β1 and TGF-β3. Impact statement Transforming growth factor-beta (TGF-β) superfamily members is a key requirement for the in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, the effects of TGF-β1 and -β3 on MSC chondrogenic differentiation and proliferation on a novel three-dimensional scaffold, the poly(vinyl alcohol)-chitosan-poly(ethylene glycol) (PVA-NOCC-PEG) scaffold, was evaluated. In this study, the results showed both TGF-β1 and TGF-β3 can enhance the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold.
The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.
Strain sensors in the form of buckypaper (BP) infiltrated with various polymers are considered a viable option for strain sensor applications such as structural health monitoring and human motion detection. Graphene has outstanding properties in terms of strength, heat and current conduction, optics, and many more. However, graphene in the form of BP has not been considered earlier for strain sensing applications. In this work, graphene-based BP infiltrated with polyvinyl alcohol (PVA) was synthesized by vacuum filtration technique and polymer intercalation. First, Graphene oxide (GO) was prepared via treatment with sulphuric acid and nitric acid. Whereas, to obtain high-quality BP, GO was sonicated in ethanol for 20 min with sonication intensity of 60%. FTIR studies confirmed the oxygenated groups on the surface of GO while the dispersion characteristics were validated using zeta potential analysis. The nanocomposite was synthesized by varying BP and PVA concentrations. Mechanical and electrical properties were measured using a computerized tensile testing machine, two probe method, and hall effect, respectively. The electrical conducting properties of the nanocomposites decreased with increasing PVA content; likewise, electron mobility also decreased while electrical resistance increased. The optimization study reports the highest mechanical properties such as tensile strength, Young's Modulus, and elongation at break of 200.55 MPa, 6.59 GPa, and 6.79%, respectively. Finally, electrochemical testing in a strain range of ε ~ 4% also testifies superior strain sensing properties of 60 wt% graphene BP/PVA with a demonstration of repeatability, accuracy, and preciseness for five loading and unloading cycles with a gauge factor of 1.33. Thus, results prove the usefulness of the nanocomposite for commercial and industrial applications.
Chitosan/polyvinyl alcohol (Chitosan/PVA) blended film was prepared by direct blend process and solution casting methods.
In order to reduce the swelling ratio and enhance the chemical and mechanical stability, Chitosan/PVA film was crosslinked
with glutaraldehyde in order to produce Chitosan-g-PVA. Bovine serum albumin (BSA) was used as a model protein
to incorporate into the Chitosan-g-PVA. The chemical structure and morphological characteristics of films were studied
by FT-IR and scanning electron microscopy (SEM). Mechanical and physical properties of blended films such as tensile
properties in the dry and wet states, water uptake and water contact angle measurement were characterized. Blending
PVA and chitosan improved strength and flexibility of the films. Crosslinking with glutaraldehyde further improves the
tensile strength and decrease the hydrophilicity of films. BSA immobilized on the Chitosan-g-PVA film was calculated as
BSA encapsulation efficiency.
This study presents the electromagnetic (EM) characterization of a multiwalled carbon nanotubes (MWCNT)-silver nanoparticles (AgNP)-reinforced poly(vinyl alcohol) (PVA) hybrid nanocomposite fabricated via the solution mixing technique. Primarily, the structure and morphological properties of the PVA/MWCNT-AgNP hybrid nanocomposite are confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The complex permittivity (ε*) and permeability (μ*), as well as the electromagnetic scattering parameters are measured using a PNA network analyzer equipped with X-band waveguide. The results showed an enhanced permittivity (ε' ≈ 25) value of the hybrid nanocomposite in the frequency range of 8-12 GHz. However, the permeability decreased to almost zero (μ' ≈ 0.4) since the inclusion of AgNP with an average particle size of 40 nm is not susceptible to magnetization and causes higher magnetic losses (tan δμ) than dielectric losses (tan δε). Remarkably, the hybrid nanocomposite reduced transmission of electromagnetic (EM) wave by nearly 60% in comparison to PVA/MWCNT. This is attributed to the enhanced absorption and reflection at the nanotubes, and metal-dielectric interfaces have induced multiple internal reflections owing to the porous structure of the nanocomposite. The prospect of the PVA/MWCNT-AgNP hybrid nanocomposite is favorable as a thin absorbing material for EM shielding applications.
Iron oxide nanoparticles are suitable for biomedical applications owing to their ability to anchor to various active agents and drugs, unique magnetic properties, nontoxicity, and biocompatibility. In this work, the physico-chemical and magnetic properties, as well as the cytotoxicity, of Fe3O4 nanoparticles coated with a polymeric carrier and loaded with a 5-fluorouracil (5-FU) anti-cancer drug are discussed. The synthesized Fe3O4 nanoparticles were coated with polyvinyl alcohol and Zn/Al-layered double hydroxide as the drug host. The XRD, DTA/TG, and FTIR analyzes confirmed the presence of the coating layer on the surface of nanoparticles. The results showed a decrease in saturation magnetization of bare Fe3O4 nanoparticles after coating with the PVA/5FU/Zn/Al-LDH layer. In addition, the presence of the coating prevented the agglomeration of nanoparticles. Furthermore, the pseudo-second-order equation governed the kinetics of drug release. Finally, the coated nanoparticles showed stronger activity against liver cancer cells (HepG2) compared to that of the naked 5-FU drug, and displayed no cytotoxicity towards 3T3 fibroblast cell lines. The results of the present study demonstrate the potential of a nano delivery system for cancer treatment.
The composition of ophthalmic preparation is administered topically to the eye in the form of a solution, suspension, ointment, gel or foam for the purpose of treating eye disease. Virgin Coconut Oil (VCO) has been one of the desired ingredients of choice, as its benefits as functional food oil is known among the public. The uniqueness of coconut oil is its fats and oils that contain the highest percentage of medium-chain fatty acids (MCFA), which have antimicrobial properties, such as lauric acid and capric acid. This study aimed to evaluate the antimicrobial effects of eye drop containing a different VCO concentration using the Kirby-Bauer test. The formulation of eye drop had 1.5%, 2% and 3% amount of virgin coconut oil, which was later added with all basic materials needed for eye drop. The samples were evaluated for its zone of inhibition (ZOI). The antimicrobial effects of eye drop formulation that contains 3% of VCO (F3) against Streptococcus pneumonia were similar with all control products (Eye Glo, Pred Forte, Cationorm), and antimicrobial effects of F3 against Staphylococcus aureus are better than Cationorm. It is noticeable that the higher the VCO content in the formulation, the better the antimicrobial effects of the eye drop. In conclusion, VCO possesses moisture, anti-inflammation, better anti-microbial properties, and it could be further formulated as a stable eye drop emulsion.
Surface modified Multi-walled carbon nanotubes (MWCNTs) Buckypaper/Polyvinyl Alcohol (BP/PVA) composite membrane was synthesized and utilized as support material for immobilization of Jicama peroxidase (JP). JP was successfully immobilized on the BP/PVA membrane via covalent bonding by using glutaraldehyde. The immobilization efficiency was optimized using response surface methodology (RSM) with the face-centered central composite design (FCCCD) model. The optimum enzyme immobilization efficiency was achieved at pH 6, with initial enzyme loading of 0.13 U/mL and immobilization time of 130 min. The results of BP/PVA membrane showed excellent performance in immobilization of JP with high enzyme loading of 217 mg/g and immobilization efficiency of 81.74%. The immobilized system exhibited significantly improved operational stability under various parameters, such as pH, temperature, thermal and storage stabilities when compared with free enzyme. The effective binding of peroxidase on the surface of the BP/PVA membrane was evaluated and confirmed by Field emission scanning electron microscopy (FESEM) coupled with Energy Dispersive X-Ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). This work reports the characterization results and performances of the surface modified BP/PVA membrane for peroxidase immobilization. The superior properties of JP-immobilized BP/PVA membrane make it promising new-generation nanomaterials for industrial applications.
A halloysite nanotubes⁻polyvinyl alcohol⁻polyvinylpyrrolidone (HNTs⁻PVA⁻PVP) composite has been investigated for a quite long time aiming at improving the physico⁻chemical characterization of HNTs. In this work, HNTs⁻PVA⁻PVP composite were prepared based on a unique procedure characterized by crosslinking two polymers with HNTs. The composite of two polymers were modified by treating HNTs with phosphoric acid (H₃PO₄) and by using malonic acid (MA) as a crosslinker. The composite was also treated by adding the dispersion agent sodium dodecyl sulfate (SDS). The HNTs⁻PVA⁻PVP composite shows better characteristics regarding agglomeration when HNTs is treated in advance by H₃PO₄. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), brunauer⁻emmett⁻teller (BET), size distribution, and atomic force microscopy (AFM) are used to characterize the physio-chemical properties of the composite. FTIR shows additional peaks at 2924.29, 1455.7, and 682.4 cm-1 compared to the neat HNTs due to adding MA. Despite that, the XRD spectra do not show a significant difference, the decrease in peak intensity could be attributed to the addition of semi-crystalline PVA and the amorphous PVP. The images taken by TEM and FESEM show the possible effects of MA on the morphology and internal feature of HNTs⁻PVA⁻PVP composite treated by MA by showing the deformation of the matrix. The BET surface area increased to 121.1 m²/g compared to the neat HNTs at 59.1 m²/g. This result, the second highest recorded result, is considered a breakthrough in enhancing the properties of HNTs⁻PVA⁻PVP composite, and treatment by MA crosslinking may attribute to the size and the number of the pores. The results from these techniques clearly showed that a significant change has occurred for treated HNTs⁻PVA⁻PVP composite where MA was added. The characterization of HNTs⁻PVA⁻PVP composite with and without treating HNTs and using crosslinker may lead to a better understanding of this new composites as a precursor to possible applications in the dentistry field.
This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10-3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte-impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density-were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38-3.59 Wh/kg and 757.58-347.22 W/kg, respectively.
In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
Crystallinity plays a vital role in the pharmaceutical industry. It affects drug manufacturing, development processes, and the stability of pharmaceutical dosage forms. An objective of this study was to measure and analyze the carbamazepine (CBZ) crystallinity before and after formulation. Moreover, it intended to determine the extent to which the crystallinity of CBZ would affect the drug loading, the particle size, and the release of CBZ from the microparticles. The CBZ microparticles were prepared by encapsulating CBZ in ethyl cellulose (EC) polymer using a solvent evaporation method. EC was used here as a release modifier polymer and polyvinyl alcohol (PVA) as an aqueous phase stabilizer. Factorial design was used to prepare the CBZ microparticle formulations, including polymer concentration, solvent (dichloromethane, ethyl acetate), PVA concentrations factor, the homogenization time, and homogenization speed. The crystallinity of CBZ was calculated utilizing differential scanning calorimetry (DSC) thermal analysis. The crystallinity was calculated from the enthalpy of CBZ. Enthalpy was analyzed from the area under the curve peak of CBZ standard and CBZ-loaded microparticles. DSC and ATR-FTIR assessed the possible interaction between CBZ and excipients in the microparticle. The prepared CBZ microparticles showed various changes in the crystallinity rate of CBZ. The changes in the rate of CBZ crystallinity had different effects on the particle size, the drug loading, and the release of CBZ from the polymer. Statistically, all studied factors significantly affected the crystallinity of CBZ after formulation to microparticles.
The specific heats (Csp) of neat polyvinyl alcohol (NPVOH) and 40 phr glycerol plasticized polyvinyl alcohol (PPVOH) were measured using a method known as power compensate differential scanning calorimetry. A high purity sapphire (Al2O3) was used as a reference material. NPVOH has a melting temperature of approximately 480 K, while PPVOH has a value of 30 K lower than NPVOH. The amplitude increment of Csp for NPVOH was also higher than PPVOH at melting stage. Overall, Csp of NPVOH is lower than PPVOH because glycerol has reduced the rigidity of PVOH and subsequently induced the motion of molecular structure at an elevated temperature. Based on the specific heat outcomes, neat PVOH and glycerol plasticized PVOH required 1173.544 J/g and 1946.631 J/g, respectively, to heat from 330 to 550 K.