METHODS: We measured 20 plasma markers i.e. IFN-γ, IL-10, granzyme-B, CX3CL1, IP-10, RANTES, CXCL8, CXCL6, VCAM, ICAM, VEGF, HGF, sCD25, IL-18, LBP, sCD14, sCD163, MIF, MCP-1 and MIP-1β in 141 dengue patients in over 230 specimens and correlate the levels of these plasma markers with the development of dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue (SD).
RESULTS: Our results show that the elevation of plasma levels of IL-18 at both febrile and defervescence phase was significantly associated with DWS+ and SD; whilst increase of sCD14 and LBP at febrile phase were associated with severity of dengue disease. By using receiver operating characteristic (ROC) analysis, the IL-18, LBP and sCD14 were significantly predicted the development of more severe form of dengue disease (DWS+/SD) (AUC = 0.768, P
Methods: HUVECs were divided into six groups: control, treatment with 10 ng/ml TNF-α, and co-treatment of 10 ng/ml TNF-α with four different concentrations of AEPS (100, 150, 250, and 300 μg/ml) for 24 h. Subsequently, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) protein expression, U937 monocyte cells adhesion, and nuclear factor-kappaB (NF-κB) p65 expression in HUVECs were measured.
Results: Treatment of TNF-α-stimulated HUVECs with AEPS at different concentrations resulted in decreased VCAM-1 and ICAM-1 protein expression in a dose-dependent manner. Furthermore, AEPS also inhibited TNF-α-stimulated U937 monocyte cells adhesion to HUVECs. In addition, AEPS reduced TNF-α-induced NF-κB p65 expression in a dose-dependent manner.
Conclusions: The results indicated that AEPS suppressed TNF-α-induced VCAM-1 and ICAM-1 expression NF-κB signaling.
AIM: To investigate the endothelial activation, inflammation, monocyte-endothelial cell binding and oxidative stress effects of four FD varieties.
METHODS: Human coronary artery endothelial cells (HCAEC) were incubated with different concentrations of aqueous ethanolic extracts of FD var. trengganuensis (FDT), var. kunstleri (FDK), var. deltoidea (FDD) and var. intermedia (FDI), together with LPS. Protein and gene expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), endothelial-leukocyte adhesion molecule-1 (E-selectin), interleukin-6 (IL-6), Nuclear factor-κB (NF-κB) p50 and p65 and endothelial nitric oxide synthase (eNOS) were measured using ELISA and QuantiGene plex, respectively. Adhesion of monocyte to HCAEC and formation of reactive oxygen species (ROS) were detected by Rose Bengal staining and 2'-7'-dichlorofluorescein diacetate (DCFH-DA) assay.
RESULTS: FDK exhibited the highest inhibition of biomarkers in relation to endothelial activation and inflammation, second in reducing monocyte binding (17.3%) compared to other varieties. FDK (25.6%) was also the most potent at decreasing ROS production.
CONCLUSION: FD has anti-atherogenic effects, possibly mediated by NF-κB and eNOS pathways; with FDK being the most potent variety. It is potentially beneficial in mitigating atherogenesis.