METHODS: Samples were subjected to microscopy examination and serological test (only for Strongyloides). Speciation for parasites on microscopy-positive samples and seropositive samples for Strongyloides were further determined via polymerase chain reaction. SPSS was used for statistical analysis.
RESULTS: A total of 294 stool and blood samples each were successfully collected, involving 131 HIV positive and 163 HIV negative adult male inmates whose age ranged from 21 to 69-years-old. Overall prevalence showed 26.5% was positive for various IPIs. The IPIs detected included Blastocystis sp., Strongyloides stercoralis, Entamoeba spp., Cryptosporidium spp., Giardia spp., and Trichuris trichiura. Comparatively, the rate of IPIs was slightly higher among the HIV positive inmates (27.5%) than HIV negative inmates (25.8%). Interestingly, seropositivity for S. stercoralis was more predominant in HIV negative inmates (10.4%) compared to HIV-infected inmates (6.9%), however these findings were not statistically significant. Polymerase chain reaction (PCR) confirmed the presence of Blastocystis, Strongyloides, Entamoeba histolytica and E. dispar.
CONCLUSIONS: These data will enable the health care providers and prison management staff to understand the trend and epidemiological situations in HIV/parasitic co-infections in a prison. This information will further assist in providing evidence-based guidance to improve prevention, control and management strategies of IPIs co-infections among both HIV positive and HIV negative inmates in a prison environment.
METHODOLOGY: Serum samples from 39 predominantly breastfeeding mother-infant pairs were analyzed for inflammatory cytokine and immunoglobulin profiles using BIOPLEX. The infants' ages ranged from 10 days to 14 weeks.
RESULTS: IL-1r, IL-4, IL-9, IL-12p70, IL-17a, G-CSF and PDGF-BB were significantly raised in E. histolytica infected compared to non-infected lactating mothers (p
METHOD: The presence of Entamoeba species was examined in 504 fresh fecal samples, collected randomly from 411 humans and 93 dogs using microscopy and polymerase chain reaction (PCR) amplifying 16 s ribosomal RNA (rRNA). Data was analyzed using appropriate statistical analysis.
RESULTS: The microscopy data showed an overall occurrence of Entamoeba species of 26.3% (108/411) and 36.6% (34/93) in humans and dogs respectively. In humans, the most common species was a single infection of E. dispar (26.5%; 13/49), followed by E. histolytica and E. moshkovskii, (20.4% for each species respectively). Double infection of E. dispar + E. moshkovskii was detected at 10.2%, followed by E. dispar + E. histolytica (8.2%) and E. moshkovskii and E. histolytica (6.1%). 8.2% of the samples had triple infection with all three species. In animals, E. moshkovskii (46.7%) was the most common species detected, followed by E. histolytica, and E. dispar, at 20.0% and 13.3% respectively. Double infection with E. moshkovskii + E. histolytica and a triple infection were found in 2 samples (13.3%) and 1 (6.7%) sample respectively. Risk factor analysis showed that members of the community who used untreated water were more prone to be infected with Entamoeba.
CONCLUSION: This study provides information on the species-specific occurrence of Entamoeba infection, the potential risk factors and their zoonotic potential to humans. This is the first report to describe the molecular occurrence of Entamoeba species in dogs in Malaysia. The presence of pathogenic Entamoeba species implies that dogs could be a reservoir or mechanical host for human amoebiasis. Further studies need to be conducted to better understand the transmission dynamics and public health significance of Entamoeba species in human and animal hosts.