METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.
RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.
CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.
RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.
CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.
METHODS: Aqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry.
RESULTS: The IC(50) values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC(50) values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC(50) that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC(50) values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract).
CONCLUSIONS: Our study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics.