Displaying publications 41 - 60 of 64 in total

Abstract:
Sort:
  1. Haque E, Banik U, Monwar T, Anthony L, Adhikary AK
    PLoS One, 2018;13(3):e0194516.
    PMID: 29590206 DOI: 10.1371/journal.pone.0194516
    Human adenovirus type 3 (HAdV-3) respiratory infections occurs worldwide in both children and adults, leading to severe morbidity and mortality, particularly in the paediatric age group and especially in neonates. During HAdV infection, neutralizing antibodies are formed against the epitopes located in the hyper variable regions (HVRs) of the hexon protein. These neutralizing antibodies provide protection against reinfection by viruses of the same type. Therefore it is reasonable to speculate that variations of HAdV-3 in the HVRs could impair the immunity acquired by previous infection with a different strain with variation in its HVRs. HAdV-3 has recently become the major agent of acute respiratory infection worldwide, being responsible for 15% to 87% of all adenoviral respiratory infections. However, despite the increased prevalence of HAdV-3 as respiratory pathogen, the diversity of hexon proteins in circulating strains remains unexplored. This study was designed to explore the variation in HVRs of hexon among globally distributed strains of HAdV-3 as well as to discover possible relationship among them, thus possibly shedding light on the cause for the increased prevalence of HAdV-3. In this study, for the first time we analysed the hexon proteins of all 248 available strains of HAdV-3 from the NCBI database and compared them with those of the HAdV-3 prototype (GB stain). We found that the HVRs of HAdV-3 strains circulating worldwide were highly heterogeneous and have been mutating continuously since -their original isolation. Based on their immense heterogeneity, the strains can be categorized into 25 hexon variants (3Hv-1 to 3Hv-25), 4 of which (3Hv-1 to 3Hv-4) comprises 80% of the strains. This heterogeneity may explain why HAdV-3 has become the most prevalent HAdVs type worldwide. The heterogeneity of hexon proteins also shows that the development of a vaccine against HAdV-3 might be challenging. The data on hexon variants provided here may be useful for the future epidemiological study of HAdV-3 infection.
    Matched MeSH terms: Antibodies, Viral/immunology
  2. Zainal N, Tan KK, Johari J, Hussein H, Wan Musa WR, Hassan J, et al.
    Microbiol. Immunol., 2018 Oct;62(10):659-672.
    PMID: 30259549 DOI: 10.1111/1348-0421.12652
    Dengue is the most prevalent mosquito-borne disease in Southeast Asia, where the incidence of systemic lupus erythematosus (SLE) is approximately 30 to 53 per 100,000. Severe dengue, however, is rarely reported among individuals with SLE. Here, whether sera of patients with SLE cross-neutralize dengue virus (DENV) was investigated. Serum samples were obtained from individuals with SLE who were dengue IgG and IgM serology negative. Neutralization assays were performed against the three major DENV serotypes. Of the dengue serology negative sera of individuals with SLE, 60%, 61% and 52% of the sera at 1/320 dilution showed more than 50% inhibition against dengue type-1 virus (DENV-1), DENV-2 and DENV-3, respectively. The neutralizing capacity of the sera was significantly greater against DENV-1 (P 
    Matched MeSH terms: Antibodies, Viral/immunology*
  3. Lim CC, Woo PCY, Lim TS
    Sci Rep, 2019 Apr 15;9(1):6088.
    PMID: 30988390 DOI: 10.1038/s41598-019-42628-6
    Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
    Matched MeSH terms: Antibodies, Viral/immunology
  4. Wang F, Gopinath SC, Lakshmipriya T
    Int J Nanomedicine, 2019;14:8469-8481.
    PMID: 31695375 DOI: 10.2147/IJN.S219976
    BACKGROUND: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.

    MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.

    RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).

    CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

    Matched MeSH terms: Antibodies, Viral/immunology*
  5. Firouzamandi M, Moeini H, Hosseini SD, Bejo MH, Omar AR, Mehrbod P, et al.
    Int J Nanomedicine, 2016;11:259-67.
    PMID: 26834470 DOI: 10.2147/IJN.S92225
    Plasmid DNA (pDNA)-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND). Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM), a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 μg pDNA/egg alone induced high levels of antibody titer (P<0.05) in specific pathogen-free (SPF) chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI) titer was not significantly different between groups injected with 40 μg pDNA + 64 μg D-SPM and 40 μg pDNA at 4 weeks postvaccination (P>0.05). Higher antibody titer was observed in the group immunized with 40 μg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 μg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection to the chickens from lethal viral challenge. In addition, vaccination with pDNA/D-SPM complex did not induce high antibody titer when compared with naked pDNA. Therefore, it was concluded that DNA vaccination with plasmid internal ribosome entry site-HN/F can be suitable for in ovo application against ND, whereas D-SPM is not recommended for in ovo gene delivery.
    Matched MeSH terms: Antibodies, Viral/immunology
  6. Bande F, Arshad SS, Bejo MH, Moeini H, Omar AR
    J Immunol Res, 2015;2015:424860.
    PMID: 25954763 DOI: 10.1155/2015/424860
    Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.
    Matched MeSH terms: Antibodies, Viral/immunology
  7. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Antibodies, Viral/immunology
  8. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
    Matched MeSH terms: Antibodies, Viral/immunology
  9. Sorokin EV, Tsareva TR, Sominina AA, Pisareva MM, Komissarov AV, Kosheleva AA, et al.
    Vopr. Virusol., 2014;59(6):27-31.
    PMID: 25929033
    A panel of five monoclonal antibodies (MAbs) to the HA1 molecule of the influenza B virus of the Victorian lineage with high virus-neutralizing activity was developed. For identification of the virus neutralizing epitopes in HA1 escape mutants (EM) of the influenza BIShandong/07/97 and B/Malaysia/2506/04 virus were selected using virus- neutralizing antibodies (MAbs). Three EMs had single, two--double and one--triple amino acid substitutions (AAS) in HA1 (H122N, A202E, K203T, K2031, K203N or A317V). In addition, AAS N197S was detected in three EMs. A correlation of AAS identified with peculiarities of interaction of EMs with Mabs was discussed.
    Matched MeSH terms: Antibodies, Viral/immunology*
  10. Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, et al.
    J Chem Inf Model, 2013 Sep 23;53(9):2423-36.
    PMID: 23980878 DOI: 10.1021/ci400421e
    ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
    Matched MeSH terms: Antibodies, Viral/immunology
  11. Moeini H, Omar AR, Rahim RA, Yusoff K
    Virol J, 2011;8:119.
    PMID: 21401953 DOI: 10.1186/1743-422X-8-119
    Studies have shown that the VP22 gene of Marek's Disease Virus type-1 (MDV-1) has the property of movement between cells from the original cell of expression into the neighboring cells. The ability to facilitate the spreading of the linked proteins was used to improve the potency of the constructed DNA vaccines against chicken anemia virus (CAV).
    Matched MeSH terms: Antibodies, Viral/immunology
  12. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Antibodies, Viral/immunology
  13. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Antibodies, Viral/immunology*
  14. Chin CF, Ler LW, Choong YS, Ong EB, Ismail A, Tye GJ, et al.
    J Microbiol Methods, 2016 Jan;120:6-14.
    PMID: 26581498 DOI: 10.1016/j.mimet.2015.11.007
    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies.
    Matched MeSH terms: Antibodies, Viral/immunology
  15. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Antibodies, Viral/immunology
  16. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Antibodies, Viral/immunology
  17. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Antibodies, Viral/immunology
  18. Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al.
    Immunity, 2019 05 21;50(5):1305-1316.e6.
    PMID: 30979688 DOI: 10.1016/j.immuni.2019.03.010
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.
    Matched MeSH terms: Antibodies, Viral/immunology*
  19. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Antibodies, Viral/immunology
  20. Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, et al.
    Microb Pathog, 2020 Dec;149:104560.
    PMID: 33068733 DOI: 10.1016/j.micpath.2020.104560
    Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.
    Matched MeSH terms: Antibodies, Viral/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links