Displaying publications 41 - 46 of 46 in total

Abstract:
Sort:
  1. Madzuki IN, Lau SF, Mohamad Shalan NAA, Mohd Ishak NI, Mohamed S
    J Biosci, 2019 Sep;44(4).
    PMID: 31502578
    Chondrosenescence (chondrocyte senescence) and subchondral bone deterioration in osteoarthritic rats were analyzed after treatment with the estrogenic herb Labisia pumila (LP) or diclofenac. Osteoarthritis (OA) was induced in bilaterally ovariectomized (OVX) rats by injecting mono-iodoacetate into the right knee joints. Rats were grouped (n = 8) into nontreated OVX+OA control, OVX+OA + diclofenac (5 mg/kg) (positive control), OVX+OA + LP leaf extract (150 and 300 mg/kg) and healthy sham control. After 8 weeks' treatment, their conditions were evaluated via serum biomarkers, knee joint histology, bone histomorphometry, protein and mRNA expressions. The LP significantly reduced cartilage erosion, femur bone surface alteration, bone loss and porosity and increased trabecular bone thickness better than diclofenac and the non-treated OA. The cartilage catabolic markers' (matrix metalloproteinase (MMP)-13, RUNX2, COL10a, ERa, CASP3 and HIF-2 alpha) mRNA expressions were down-regulated and serum bone formation marker, PINP, was increased by LP in a dose-dependent manner. The LP (containing myricetin and gallic acid) showed protection against chondrosenescence, chondrocyte death, hypoxia-induced cartilage catabolism and subchondral bone deterioration. The bone and cartilage protective effects were by suppressing proteases (collagen break-down), bone resorption and upregulating subchondral bone restoration. The cartilage ER alpha over-expression showed a strong positive correlation with MMP-13, COL10 alpha1, histological, micro-computed tomography evidence for cartilage degradation and chondrosenescence.
    Matched MeSH terms: Aging/drug effects*
  2. Makpol S, Zainuddin A, Chua KH, Yusof YA, Ngah WZ
    Clinics (Sao Paulo), 2012;67(2):135-43.
    PMID: 22358238
    OBJECTIVE: Human diploid fibroblasts undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular aging. The beneficial effects of vitamin E in aging have been established, but studies to determine the mechanisms of these effects are ongoing. This study determined the molecular mechanism of γ-tocotrienol, a vitamin E homolog, in the prevention of cellular aging in human diploid fibroblasts using the expression of senescence-associated genes.

    METHODS: Primary cultures of young, pre-senescent, and senescent fibroblast cells were incubated with γ-tocotrienol for 24 h. The expression levels of ELN, COL1A1, MMP1, CCND1, RB1, and IL6 genes were determined using the quantitative real-time polymerase chain reaction. Cell cycle profiles were determined using a FACSCalibur Flow Cytometer.

    RESULTS: The cell cycle was arrested in the G(0)/G(1) phase, and the percentage of cells in S phase decreased with senescence. CCND1, RB1, MMP1, and IL6 were upregulated in senescent fibroblasts. A similar upregulation was not observed in young cells. Incubation with γ-tocotrienol decreased CCND1 and RB1 expression in senescent fibroblasts, decreased cell populations in the G(0)/G(1) phase and increased cell populations in the G(2)/M phase. γ-Tocotrienol treatment also upregulated ELN and COL1A1 and downregulated MMP1 and IL6 expression in young and senescent fibroblasts.

    CONCLUSION: γ-Tocotrienol prevented cellular aging in human diploid fibroblasts, which was indicated by the modulation of the cell cycle profile and senescence-associated gene expression.

    Matched MeSH terms: Cell Aging/drug effects*
  3. Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al.
    BMC Complement Altern Med, 2014 Oct 07;14:381.
    PMID: 25292439 DOI: 10.1186/1472-6882-14-381
    BACKGROUND: Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient.

    METHODS: Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength).

    RESULTS: LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent.

    CONCLUSIONS: Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

    Matched MeSH terms: Skin Aging/drug effects*
  4. Makpol S, Abdul Rahim N, Hui CK, Ngah WZ
    Oxid Med Cell Longev, 2012;2012:785743.
    PMID: 22919441 DOI: 10.1155/2012/785743
    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
    Matched MeSH terms: Cell Aging/drug effects*
  5. Singh P, Charles S, Madhavan T, Munusamy-Ramanujam G, Saraswathi NT, Arasu MV, et al.
    Eur J Pharmacol, 2021 Jan 15;891:173697.
    PMID: 33144068 DOI: 10.1016/j.ejphar.2020.173697
    We investigated the role of protein arginine methylation (PAM) in estrogen receptor (ER)-positive breast cancer cells through pharmacological intervention. Tamoxifen (TAM) or adenosine dialdehyde (ADOX), independently, triggered cell cycle arrest and down-regulated PAM, as reduced protein arginine methyltransferase1 (PRMT1) mRNA and asymmetric dimethylarginine (ADMA) levels. Synergistic effect of these compounds elicited potent anti-cancer effect. However, reduction in ADMA was not proportionate with the compound-induced down-regulation of PRMT1 mRNA. We hypothesized that the disproportionate effect is due to the influence of the compounds on other methyltransferases, which catalyze the arginine dimethylation reaction and the diversity in the degree of drug-protein interaction among these methyltransferases. In silico analyses revealed that independently, ADOX or TAM, binds with phosphatidylethanolamine-methyltransferase (PEMT) or betaine homocysteine-methyl transferase (BHMT); and that the binding affinity of ADOX with PEMT or BHMT is prominent than TAM. These observations suggest that in breast cancer, synergistic effect of ADOX + TAM elicits impressive protective function by regulating PAM; and plausibly, restoration of normal enzyme activities of methyltransferases catalyzing arginine dimethylation could have clinical benefits.
    Matched MeSH terms: Cell Aging/drug effects*
  6. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Skin Aging/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links