METHODS: We conducted a nested case-control study in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate C-reactive protein (CRP), IL6, and EOC risk by tumor characteristics. A total of 754 eligible EOC cases were identified; two controls (n = 1,497) were matched per case. We used multivariable conditional logistic regression to assess associations.
RESULTS: CRP and IL6 were not associated with overall EOC risk. However, consistent with prior research, CRP >10 versus CRP ≤1 mg/L was associated with higher overall EOC risk [OR, 1.67 (1.03-2.70)]. We did not observe significant associations or heterogeneity in analyses by tumor characteristics. In analyses stratified by waist circumference, inflammatory markers were associated with higher risk among women with higher waist circumference; no association was observed for women with normal waist circumference [e.g., IL6: waist ≤80: ORlog2, 0.97 (0.81-1.16); waist >88: ORlog2, 1.78 (1.28-2.48), Pheterogeneity ≤ 0.01].
CONCLUSIONS: Our data suggest that high CRP is associated with increased risk of overall EOC, and that IL6 and CRP may be associated with EOC risk among women with higher adiposity.
IMPACT: Our data add to global evidence that ovarian carcinogenesis may be promoted by an inflammatory milieu.
METHODS: We used three single nucleotide polymorphisms (SNPs) (rs8176746, rs505922, and rs8176704) to determine ABO genotype in 2,774 aggressive prostate cancer cases and 4,443 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). Unconditional logistic regression was used to calculate age and study-adjusted odds ratios and 95% confidence intervals for the association between blood type, genotype, and risk of aggressive prostate cancer (Gleason score ≥8 or locally advanced/metastatic disease (stage T3/T4/N1/M1).
RESULTS: We found no association between ABO blood type and risk of aggressive prostate cancer (Type A: OR = 0.97, 95%CI = 0.87-1.08; Type B: OR = 0.92, 95%CI =n0.77-1.09; Type AB: OR = 1.25, 95%CI = 0.98-1.59, compared to Type O, respectively). Similarly, there was no association between "dose" of A or B alleles and aggressive prostate cancer risk.
CONCLUSIONS: ABO blood type was not associated with risk of aggressive prostate cancer.
METHODS: A nested case-control study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. Serum zinc and copper levels were measured in baseline blood samples by total reflection X-ray fluorescence in cancer cases (HCC n=106, IHDB n=34, GBTC n=96) and their matched controls (1:1). The Cu/Zn ratio, an indicator of the balance between the micronutrients, was computed. Multivariable adjusted odds ratios and 95% confidence intervals (OR; 95% CI) were used to estimate cancer risk.
RESULTS: For HCC, the highest vs lowest tertile showed a strong inverse association for zinc (OR=0.36; 95% CI: 0.13-0.98, Ptrend=0.0123), but no association for copper (OR=1.06; 95% CI: 0.45-2.46, Ptrend=0.8878) in multivariable models. The calculated Cu/Zn ratio showed a positive association for HCC (OR=4.63; 95% CI: 1.41-15.27, Ptrend=0.0135). For IHBC and GBTC, no significant associations were observed.
CONCLUSIONS: Zinc may have a role in preventing liver-cancer development, but this finding requires further investigation in other settings.
METHODS: Over half a million participants from 10 European countries were followed up for over 11 years, after which 865 newly diagnosed exocrine pancreatic cancer cases were identified. Adherence to the MD was estimated through an adapted score without the alcohol component (arMED) to discount alcohol-related harmful effects. Cox proportional hazards regression models, stratified by age, sex and centre, and adjusted for energy intake, body mass index, smoking status, alcohol intake and diabetes status at recruitment, were used to estimate hazard ratios (HRs) associated with pancreatic cancer and their corresponding 95% confidence intervals (CIs).
RESULTS: Adherence to the arMED score was not associated with risk of pancreatic cancer (HR high vs low adherence=0.99; 95% CI: 0.77-1.26, and HR per increments of two units in adherence to arMED=1.00; 95% CI: 0.94-1.06). There was no convincing evidence for heterogeneity by smoking status, body mass index, diabetes or European region. There was also no evidence of significant associations in analyses involving microscopically confirmed cases, plausible reporters of energy intake or other definitions of the MD pattern.
CONCLUSIONS: A high adherence to the MD is not associated with pancreatic cancer risk in the EPIC study.
METHODS: This study was conducted within the European Prospective Investigation into Nutrition and Cancer cohort, comprising male and female participants from 10 European countries. Between 1992 and 2000, there were 477,312 participants without cancer who completed a dietary questionnaire and were followed up to determine pancreatic cancer incidence. Coffee and tea intake was calibrated with a 24-hour dietary recall. Adjusted hazard ratios (HRs) were computed using multivariable Cox regression.
RESULTS: During a mean follow-up period of 11.6 y, 865 first incidences of pancreatic cancers were reported. When divided into fourths, neither total intake of coffee (HR, 1.03; 95% confidence interval [CI], 0.83-1.27; high vs low intake), decaffeinated coffee (HR, 1.12; 95% CI, 0.76-1.63; high vs low intake), nor tea were associated with risk of pancreatic cancer (HR, 1.22, 95% CI, 0.95-1.56; high vs low intake). Moderately low intake of caffeinated coffee was associated with an increased risk of pancreatic cancer (HR, 1.33; 95% CI, 1.02-1.74), compared with low intake. However, no graded dose response was observed, and the association attenuated after restriction to histologically confirmed pancreatic cancers.
CONCLUSIONS: Based on an analysis of data from the European Prospective Investigation into Nutrition and Cancer cohort, total coffee, decaffeinated coffee, and tea consumption are not related to the risk of pancreatic cancer.
METHODS: A total of 1,055 colorectal cancer cases (colon n = 659; rectal n = 396) were matchced (1:1) to control subjects. Circulating glycer-AGEs were measured by a competitive ELISA. Multivariable conditional logistic regression models were used to calculate ORs and 95% confidence intervals (95% CI), adjusting for potential confounding factors, including smoking, alcohol, physical activity, body mass index, and diabetes status.
RESULTS: Elevated glycer-AGEs levels were not associated with colorectal cancer risk (highest vs. lowest quartile, 1.10; 95% CI, 0.82-1.49). Subgroup analyses showed possible divergence by anatomical subsites (OR for colon cancer, 0.83; 95% CI, 0.57-1.22; OR for rectal cancer, 1.90; 95% CI, 1.14-3.19; Pheterogeneity = 0.14).
CONCLUSIONS: In this prospective study, circulating glycer-AGEs were not associated with risk of colon cancer, but showed a positive association with the risk of rectal cancer.
IMPACT: Further research is needed to clarify the role of toxic products of carbohydrate metabolism and energy excess in colorectal cancer development.
METHODS AND FINDINGS: The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed.
CONCLUSIONS: These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer.