MATERIALS AND METHODS: This systematic survey was accomplished as per the PRISMA guidelines. The information was collected from books, and electronic search (PubMed, Science Direct, Lilca and Scielo) during 1967-2019.
RESULTS: Many phytochemicals have been identified till date, including alkaloids as its major secondary metabolites (piperine and piperlongumine), essential oil, flavonoids and steroids. These exhibit a wide range of activities including anti-inflammatory, analgesic, anti-oxidant, anti-microbial, anti-cancer, anti-parkinsonian, anti-stress, nootropic, anti-epileptic, anti-hyperglycemic, hepatoprotective, anti-hyperlipidemic, anti-platelet, anti-angiogenic, immunomodulatory, anti-arthritic, anti-ulcer, anti-asthmatic, anthelmintic action, anti-amebic, anti-fungal, mosquito larvicidal and anti-snake venom.
CONCLUSION: Amongst various activities, bioscientific clarification in relation to its ethnopharmacological perspective has been evidenced mainly for anti-amebic, anthelminthic, anti-tumor and anti-diabetic activity. However, despite traditional claims, insufficient scientific validation for the treatment of insomnia, dementia, epilepsy, rheumatoid arthritis, asthma, spleen disorder, puerperal fever and leprosy, necessitate future investigations in this direction. It is also essential and critical to generate toxicological data and pharmacokinetics on human subjects so as to confirm its conceivable bio-active components in the body.
AIM OF THE STUDY: To assess the in vitro mutagenicity and in vivo genotoxicity of aqueous extract of V. officinalis leaves using a modified Ames test and rat bone marrow micronucleus assay according to OECD guidelines.
MATERIALS AND METHODS: In vitro Ames test was carried out using different strains of Salmonella (TA97a, TA98, TA100, and TA1535) and Escherichia coli WP2 uvrA (pKM101) in the presence or absence of metabolic activation (S9 mixture). For micronucleus experiment, male and female Sprague-Dawley rats (n = 6/group) were received a single oral daily dose of 500, 1000, and 2000 mg/kg of V. officinalis extract for three days. Negative and positive control rats were received distilled water or a single intraperitoneal injection of 50 mg/kg of cyclophosphamide, respectively. Following dissection, femurs were collected and bone marrow cells were stained with May-Grünwald-Giemsa solution for micronucleus assessment.
RESULTS: Ames test results demonstrated that 5, 2.5, 1.25 and 0.625 mg/ml of V. officinalis extract induced a significant mutagenic effect against TA100 and TA98 strains (with and without metabolic activation). Findings of the animal study showed there were no significant increase in the micronucleated polychromatic erythrocytes (MNPE) and no significant alterations in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio of treated rats as compared with their negative control. Meanwhile, significantly increased in the MNPEs was seen in the cyclophosphamide-treated group only.
CONCLUSION: Aqueous extract of V. officinalis has mutagenic effect against TA98 and TA100 strains as demonstrated by Ames test, however, there is no in vivo clastogenic and myelotoxic effect on bone marrow micronucleus of rats indicating that the benefits of using V. officinalis in traditional practice should outweigh risks.
AIM OF THE STUDY: To determine the self-reported prevalence and severity of opioid-related adverse effects after kratom initiation in a cohort of illicit opioid users.
MATERIALS AND METHODS: A total of 163 illicit opioid users with current kratom use history were recruited through convenience sampling from the northern states of Peninsular Malaysia. Face-to-face interviews were conducted using a semi-structured questionnaire.
RESULTS: Respondents were all males, majority Malays (94%, n = 154/163), with a mean age of 37.10 years (SD = 10.9). Most were single (65%, n = 106/163), had 11 years of education (52%, n = 85/163) and employed (88%, n = 144/163). Half reported using kratom for over >6 years (50%, n = 81/163), and 41% consumed >3 glasses of kratom daily (n = 67/163). Results from Chi-square analysis showed kratom initiation was associated with decreased prevalence of respiratory depression, constipation, physical pain, insomnia, depression, loss of appetite, craving, decreased sexual performance, weight loss and fatigue.
CONCLUSIONS: Our findings indicate that kratom initiation (approximately 214.29 mg of mitragynine) was associated with significant decreases in the prevalence and severity of opioid adverse effects.
METHODS: Phytochemicals, along with their potential antidiabetic property, were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species are also included.
RESULTS: The scrutiny of literature led to the identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert anti-diabetic properties by improving or mimicking insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be potential active compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are obtained from triterpenoids, 13 from flavonoids and 7 from alkaloids. Among all the 44 plant species, the maximum number (7) of compounds were isolated from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds.
CONCLUSION: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish therapeutic drug candidates.