Displaying publications 441 - 460 of 517 in total

Abstract:
Sort:
  1. Syahriza Ismail, Nurul Izza Soaid, Suriyati Mohamed Ansari, Nurulhuda Bashirom, Monna Rozana, Tan, Wai Kian, et al.
    MyJurnal
    In the formation of ZrO2 (zirconia) nanotubes (ZNTs) by anodisation of zirconium, a balance between chemical etching at the surface of the nanotubes and inward growth inside the nanotubes is required. This can be achieved by using fluorinated organic electrolyte like ethylene glycol with the addition of small volume of oxidant. In this work, carbonate was selected as the oxidant and NH4F as the source of fluoride for chemical etching process. Two sets of electrolytes were studied EG/fluoride/Na2CO3 and EG/fluoride/K2CO3. It appears that in the presence of carbonate evolution of gas at the anode during the anodisation process was rather severe. The gas which is likely to be CO2 was found to weaken the adherence between the oxide film with the underlying Zr foil. This induced the formation of free standing ZNTs. High Resolution Transmission Electron Microscope (HRTEM) was used to investigate the crystallinity of the nanotubes where the majority crystal phase of ZNTs was tetragonal/cubic. The ZNTs were used as photocatalysts to oxidize methyl orange dye.
    Matched MeSH terms: Carbon Dioxide
  2. Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS
    Int J Mol Sci, 2017 Jan 22;18(1).
    PMID: 28117737 DOI: 10.3390/ijms18010215
    Microalgae contribute up to 60% of the oxygen content in the Earth's atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.
    Matched MeSH terms: Carbon Dioxide
  3. Ab Lah R, Kelaher BP, Bucher D, Benkendorff K
    Mar Environ Res, 2018 Oct;141:100-108.
    PMID: 30119918 DOI: 10.1016/j.marenvres.2018.08.009
    Rising levels of atmospheric carbon dioxide are driving ocean warming and acidification. This could cause stress resulting in decreases in nutritional quality of marine species for human consumption, if environmental changes go beyond the optimal range for harvested species. To evaluate this, we used ambient and near-future elevated temperatures and pCO2 to assess impacts on the proximate nutritional composition (moisture, ash, protein, and lipids), fatty acids and trace elements of the foot tissue of Turbo militaris, a commercially harvested marine snail from south-eastern Australia. In a fully orthogonal design, the snails were exposed to ambient seawater conditions (22 ± 0.2 °C, pH 8.13 ± 0.01-450 μatm pCO2), ocean warming (25 ± 0.05 °C), pCO2 ocean acidification (pH 7.85 ± 0.02, ∼880 μatm pCO2) or a combination of both in controlled flow-through seawater mesocosms for 38 days. Moisture, ash, protein and total lipid content of the foot tissue in the turban snails was unaffected by ocean warming or acidification. However, ocean warming caused a reduction in healthful polyunsaturated fatty acids (PUFA) relative to saturated fatty acids (SFA). Under future warming and acidification conditions, there was a significant 3-5% decrease in n-3 fatty acids, which contributed to a decrease in the n-3/n-6 fatty acid ratio. The decrease in n-3 PUFAs, particularly Eicopentanoic acid (EPA), is a major negative outcome from ocean warming, because higher n-3/n-6 ratios in seafood are desirable for human health. Furthermore, ocean warming was found to increase levels of zinc in the tissues. Calcium, iron, macroelements, microelements and the composition of toxic elements did not appear to be affected by ocean climate change. Overall, the major impact from ocean climate change on seafood quality is likely to be a decrease in healthy polyunsaturated fatty acids at higher temperatures.
    Matched MeSH terms: Carbon Dioxide
  4. Atiqah MSN, Gopakumar DA, F A T O, Pottathara YB, Rizal S, Aprilia NAS, et al.
    Polymers (Basel), 2019 Nov 05;11(11).
    PMID: 31694184 DOI: 10.3390/polym11111813
    The conventional isolation of cellulose nanofibers (CNFs) process involves high energy input which leads to compromising the pulp fiber's physical and chemical properties, in addition to the issue of elemental chlorine-based bleaching, which is associated with serious environmental issues. This study investigates the characteristic functional properties of CNFs extracted via total chlorine-free (TCF) bleached kenaf fiber followed by an eco-friendly supercritical carbon dioxide (SC-CO2) treatment process. The Fourier transmission infra-red FTIR spectra result gave remarkable effective delignification of the kenaf fiber as the treatment progressed. TEM images showed that the extracted CNFs have a diameter in the range of 10-15 nm and length of up to several micrometers, and thereby proved that the supercritical carbon dioxide pretreatment followed by mild acid hydrolysis is an efficient technique to extract CNFs from the plant biomass. XRD analysis revealed that crystallinity of the fiber was enhanced after each treatment and the obtained crystallinity index of the raw fiber, alkali treated fiber, bleached fiber, and cellulose nanofiber were 33.2%, 54.6%, 88.4%, and 92.8% respectively. SEM images showed that amorphous portions like hemicellulose and lignin were removed completely after the alkali and bleaching treatment, respectively. Moreover, we fabricated a series of cellulose nanopapers using the extracted CNFs suspension via a simple vacuum filtration technique. The fabricated cellulose nanopaper exhibited a good tensile strength of 75.7 MPa at 2.45% strain.
    Matched MeSH terms: Carbon Dioxide
  5. Nurul Atikah Shariff, Azman Jalar, Muhamad Izhar Sahri, Norinsan Kamil Othman
    Sains Malaysiana, 2014;43:1069-1075.
    Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2) and wet (Ar-75%CO2-12%H2O) environments at 700oC. This experimental setup involved horizontal tube furnace connected to CO2 gas and water vapour facilities. X-ray diffraction (XRD) technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope techniques were used to characterize the products of corrosion. The results of XRD showed that the phase of oxide layers consists of Cr2O3 and NiCr2O4 in dry CO2, meanwhile Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 were identified in wet condition after 50 h. Adding 12%H2O in Ar-75%CO2 leads significantly in weight change occurred at 10 h exposure. However, after 20 h, the weight gain was decreased due to spallation of the oxide scale. The addition of water vapour accelerates the oxidation rate on the steel than that in dry condition. Morphologies and growth kinetics of these oxides vary with reaction condition. The oxidation behaviour at different times of exposure and the effect of water vapour were discussed in correlation with the microstructure of the oxides.
    Matched MeSH terms: Carbon Dioxide
  6. Lai FC
    Sains Malaysiana, 2015;44:1599-1607.
    Cement industries globally produced about 2.282 billion ton/year and 25 billion tons of concrete are produced yearly
    all over the world, necessary measures are to be taken to reduce energy use along with the prevention of environmental
    degradation, depletion of the limited resources and contribute 7% to global warming effects due to the release of carbon
    dioxide to the atmosphere. Cement additives quality improver polymer (CAQIP) was developed from synthesized polymer,
    waste materials derived from petro-chemical and palm oil waste for production of sustainable cement. Industrial scale
    trial in a local cement plants by dosing 0.009%-0.690% CAQIP significant improved productivity, 8.3-27.5% efficiency in
    saving, 24.73-86.36% clinkering energy and 7.7-21.57% grinding energy in the production of Ordinary Portland Cement
    and sustainable cement. Strength quality improved 7.31-34.8% (2 day) and 3.85-57.58% (28 day). Carbon dioxide and
    others toxic gases emission was reduced 21.90-90.0% by replacing clinker with waste material such as fly ash (25-
    35%), out-spec clinker (50-100%) and limestone waste (5-25%). The developed CAQIP significant improved productivity,
    quality strength, reduced CO2
    emission, grinding & clinkering energy and enhanced production of sustainable cement
    and concrete in Malaysia.
    Matched MeSH terms: Carbon Dioxide
  7. Akinyemi SA, Gitari WM, Thobakgale R, Petrik LF, Nyakuma BB, Hower JC, et al.
    Environ Geochem Health, 2020 Sep;42(9):2771-2788.
    PMID: 31900823 DOI: 10.1007/s10653-019-00511-3
    The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
    Matched MeSH terms: Carbon Dioxide
  8. Meng Y, Ling TC, Mo KH, Tian W
    Sci Total Environ, 2019 Jun 25;671:827-837.
    PMID: 30947055 DOI: 10.1016/j.scitotenv.2019.03.411
    Carbonation for the curing of cement-based materials has been gaining increased attention in recent years, especially in light of emerging initiatives to reduce carbon dioxide (CO2) emissions. Carbonation method or CO2 curing is founded on the basis of the reaction between CO2 and cement products to form thermally stable and denser carbonate, which not only improves the physical and mechanical properties of cement-based materials, but also has the ability to utilize and store CO2 safely and permanently. This study aims to assess the effect of CO2 curing technology on the high-temperatures performance of cement blocks. Upon molding, dry-mix cement blocks were cured under statically accelerated carbonation condition (20% CO2 concentration with 70% relative humidity) for 28 days, followed by exposure to elevated temperatures of 300 °C to 800 °C in order to comprehensively study the principal phase changes and decompositions of cement hydrates. The results indicated that CO2 curing improved the performance of cement blocks, such as enhancement in the residual compressive strength and reducing the sorptivity. At 600 °C, the scanning electron microscopy (SEM) revealed a denser microstructure while thermal analisis and X-ray diffraction (XRD) analysis also clearly demonstrated that higher amounts of calcium carbonate were present in the cement blocks after CO2 curing, suggesting better high-temperature performance compared to natural cured cement blocks. In general, an improved high-temperature performance, specifically at 600 °C of the dry-mixed cement blocks was demonstrated by adopting the CO2 curing technology. This confirms the potential of utilizing CO2 curing technology in not only improving quality of cement blocks, new avenue for storing of CO2 in construction material can be realized at the same time.
    Matched MeSH terms: Carbon Dioxide
  9. Zulkefli NN, Masdar MS, Wan Isahak WNR, Md Jahim J, Md Rejab SA, Chien Lye C
    PLoS One, 2019;14(2):e0211713.
    PMID: 30753209 DOI: 10.1371/journal.pone.0211713
    Adsorption technology has led to the development of promising techniques to purify biogas, i.e., biomethane or biohydrogen. Such techniques mainly depend on the adsorbent ability and operating parameters. This research focused on adsorption technology for upgrading biogas technique by developing a novel adsorbent. The commercial coconut shell activated carbon (CAC) and two types of gases (H2S/N2 and H2S/N2/CO2) were used. CAC was modified by copper sulfate (CuSO4), zinc acetate (ZnAc2), potassium hydroxide (KOH), potassium iodide (KI), and sodium carbonate (Na2CO3) on their surface to increase the selectivity of H2S removal. Commercial H2S adsorbents were soaked in 7 wt.% of impregnated solution for 30 min before drying at 120°C for 24 h. The synthesized adsorbent's physical and chemical properties, including surface morphology, porosity, and structures, were characterized by SEM-EDX, FTIR, XRD, TGA, and BET analyses. For real applications, the modified adsorbents were used in a real-time 0.85 L single-column adsorber unit. The operating parameters for the H2S adsorption in the adsorber unit varied in L/D ratio (0.5-2.5) and feed flow rate (1.5-5.5 L/min) where, also equivalent with a gas hourly space velocity, GHSV (212.4-780.0 hour-1) used. The performances of H2S adsorption were then compared with those of the best adsorbent that can be used for further investigation. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties (i.e., crystallinity and surface area). BET analysis further shows that the modified adsorbents surface area decreased by up to 96%. Hence, ZnAc2-CAC clarify as the best adsorption capacity ranging within 1.3-1.7 mg H2S/g, whereby the studied extended to adsorption-desorption cycle.
    Matched MeSH terms: Carbon Dioxide
  10. Wan Mansor WN, Abdullah S, Che Wan Othman CWMN, Jarkoni MNK, Chao HR, Lin SL
    Data Brief, 2020 Jun;30:105440.
    PMID: 32300616 DOI: 10.1016/j.dib.2020.105440
    Energy has a significant influence on Malaysia's industry. It is used in electricity generation, refineries, gas processing plants and end-user applications such as transportation, residential, agriculture and fishing. These burning fossil fuel activities produce greenhouse gases (GHG) emissions. This article presents the emissions data of fuel used in power plants in Malaysia during the year of 1990 until 2017. The fuel used in power plants is coal and coke, natural gas, diesel oil and residual fuel oil. The energy data used in power plants were gathered from the Malaysia Energy Information Hub, published by the Malaysian Energy Commission. The GHG emissions data were calculated using the emission factors method. The climate impact of different GHGs in terms of CO2-equivalent (CO2-e) was also calculated using global warming potentials. The article also presents population data in Malaysia during the year. A correlation between the fuels, GHG emission and the population is also investigated using statistical analysis. The data presented here may facilitate the Malaysian government to identify the source of the pollutants and undertake a climate change mitigation plan.
    Matched MeSH terms: Carbon Dioxide
  11. Nur Anira Syafiqah Hazman, Hassimi Abu Hasan, Kamrul Fakir Kamarudin, Nazlina Haiza Mohd Yasin, Mohd Sobri Takriff, Noor Irma Nazashida Mohd Hakimi
    Sains Malaysiana, 2018;47:1455-1464.
    Malaysian economy relies on palm oil industries as a driver for rural development. However, palm oil mill effluent
    (POME) that is generated from palm oil processing stages causes major environmental challenges. Before being
    released to the environment, POME treatment is crucial to comply with standard discharge limit. Microalgae have
    demonstrated excellent potential for phycoremediating POME and capturing CO2
    . In this study, local microalgae isolate
    such as Chlamydomonas sp. UKM 6 and Chlorella spp. UKM 8 were used for POME treatment in 21 days with different
    inoculum sizes (5%, 10% and 15%). In addition, an integrated treatment process was performed by taking the treated
    POME supernatant for cultivation of Chorella spp. UKM 2, Chorella sorokiniana UKM 3 and Chlorella vulgaris for CO2
    sequestration study. Different CO2
    concentrations (5%, 10% and 15%) were used and the experiments were carried
    out in 10 days under continuous illumination. The results showed that among two species involves in POME treatment,
    Chlamydomonas sp. UKM 6 showed a great potential to remove pollutant such as COD (56%), nitrogen (65%) and
    phosphorus (34%). The biomass after POME treatment and CO2
    biofixation content high lipid (90 mg lipid/g biomass)
    which can be the potential source for biodiesel production. In CO2
    sequestration study, C. sorokininana UKM3 able
    to takes up to 15% CO2
    with CO2
    uptake rate of 273 mgL-1d-1. In this study, the integrated system of POME treatment
    and CO2
    sequestration were feasible using microalgae.
    Matched MeSH terms: Carbon Dioxide
  12. Lee ZS, Chin SY, Cheng CK
    Heliyon, 2019 Jun;5(6):e01792.
    PMID: 31245637 DOI: 10.1016/j.heliyon.2019.e01792
    This study evaluates the effects of subcritical hydrothermal treatment on palm oil mill effluent (POME) and its concomitant formations of solid hydrochar, liquid product and gaseous product. The reactions were carried out at temperatures ranged 493 K-533 K for 2 h. The highest reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 58.8% and 62.5%, respectively, at 533 K. In addition, the removal of total suspended solids (TSS) achieved up to 99%, with the pH of POME reaching 6 from the initial pH 4. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis showed that the fresh POME contained n-Hexadecanoic acid as the dominant component, which gradually reduced in the liquid product in the reaction with increased temperature, in addition to the attenuation of carboxyl compounds and elevation of phenolic components. The gaseous products contained CO2, CO, H2, and C3 - C6 hydrocarbons. Traces of CH4 were only found at 533 K. CO2 is the dominant species, where the highest of 3.99 vol% per 500 mL working volume of POME recorded at 533 K. The solid hydrochars showed negligible morphological changes across the reaction temperature. The O/C atomic ratio of the hydrochar range from 0.157 to 0.379, while the H/C atomic ratio was in the range from 0.930 to 1.506. With the increase of treatment temperature, the higher heating value (HHV) of the hydrochar improved from 24.624 to 27.513 MJ kg-1. The characteristics of hydrochar make it a fuel source with immense potential. POME decomposed into water-soluble compounds, followed by deoxygenation (dehydration and decarboxylation) in producing hydrochar with lower oxygen content and higher aromatic compounds in the liquid product. Little gaseous hydrocarbons were produced due to subcritical hydrothermal gasification at low temperature.
    Matched MeSH terms: Carbon Dioxide
  13. Rashid FAA, Crisp PA, Zhang Y, Berkowitz O, Pogson BJ, Day DA, et al.
    Plant Cell Environ, 2020 03;43(3):594-610.
    PMID: 31860752 DOI: 10.1111/pce.13706
    To further our understanding of how sustained changes in temperature affect the carbon economy of rice (Oryza sativa), hydroponically grown plants of the IR64 cultivar were developed at 30°C/25°C (day/night) before being shifted to 25/20°C or 40/35°C. Leaf messenger RNA and protein abundance, sugar and starch concentrations, and gas-exchange and elongation rates were measured on preexisting leaves (PE) already developed at 30/25°C or leaves newly developed (ND) subsequent to temperature transfer. Following a shift in growth temperature, there was a transient adjustment in metabolic gene transcript abundance of PE leaves before homoeostasis was reached within 24 hr, aligning with Rdark (leaf dark respiratory CO2 release) and An (net CO2 assimilation) changes. With longer exposure, the central respiratory protein cytochrome c oxidase (COX) declined in abundance at 40/35°C. In contrast to Rdark , An was maintained across the three growth temperatures in ND leaves. Soluble sugars did not differ significantly with growth temperature, and growth was fastest with extended exposure at 40/35°C. The results highlight that acclimation of photosynthesis and respiration is asynchronous in rice, with heat-acclimated plants exhibiting a striking ability to maintain net carbon gain and growth when exposed to heat-wave temperatures, even while reducing investment in energy-conserving respiratory pathways.
    Matched MeSH terms: Carbon Dioxide
  14. Ishak MAI, Jumbri K, Daud S, Abdul Rahman MB, Abdul Wahab R, Yamagishi H, et al.
    J Hazard Mater, 2020 11 15;399:123008.
    PMID: 32502857 DOI: 10.1016/j.jhazmat.2020.123008
    The compatibility and performance of an Isoreticular Metal-Organic Frameworks (IRMOF-1) impregnated with choline-based ionic liquids (ILs) for selective adsorption of H2S/CO2, were studied by molecular dynamics (MD) simulation. Cholinium alanate ([Chl][Ala]) was nominated as the suitable IL for impregnation into IRMOF-1, consistent with the low RMSD values (0.546 nm, 0.670 nm, 0.776 nm) at three IL/IRMOF-1 w/w ratios (WIL/IRMOF-1 = 0.4, 0.8, and 1.2). The [Chl]+ and [Ala]- ion pair was located preferentially around the carboxylate group within the IRMOF-1 framework, with the latter interacting strongly with the host than the [Chl]+. Results of radius of gyration (Rg) and root mean square displacement (RMSD) revealed that a ratio of 0.4 w/w of IL/IRMOF-1 (Rg = 1.405 nm; RMSD = 0.546 nm) gave the best conformation to afford an exceptionally stable IL/IRMOF-1 composite. It was discovered that the IL/IRMOF-1 composite was more effective in capturing H2S and CO2 compared to pristine IRMOF-1. The gases adsorbed in higher quantities in the IL/IRMOF-1 composite phase compared to the bulk phase, with a preferential adsorption for H2S, as shown by the uppermost values of adsorption ( [Formula: see text] = 17.954 mol L-1 bar-1) and an adsorption selectivity ( [Formula: see text] = 43.159) at 35 IL loading.
    Matched MeSH terms: Carbon Dioxide
  15. Kamal K, Bustam MA, Ismail M, Grekov D, Mohd Shariff A, Pré P
    Materials (Basel), 2020 Jun 17;13(12).
    PMID: 32560394 DOI: 10.3390/ma13122741
    Solvothermal synthesis is the most preferable preparation technique of metal-organic frameworks (MOFs) that consists of reactants mixing, ultrasonication, solvothermal reaction, product washing, and solvent evacuation. Owing to fast reaction kinetics in solvothermal reaction, this technique allows for production of uniform MOF particles with high crystallinity, high phase purity, and small particle sizes. However, it exhibits some difficulties of washing processes that may involve the blockage of pores due to incomplete removal of reactive medium from MOF products. The present study proposes an improvement of washing processes by introducing centrifugal separations with optimized parameters at two different stages: after reaction and after product washing. Nickel‑based MOF‑74 was synthesized as the experimental material for this purpose. The quality of the produced sample was evaluated by gas adsorption performance using CO2 at 1 bar and 25 °C. The final sample of the optimized synthesis routes was able to adsorb 5.80 mmol/g of CO2 uptake, which was competitive with literature data and significantly higher than the sample of the basic synthesis. Fourier‑transform infrared spectroscopy (FTIR) and powder X‑ray diffraction (PXRD) analysis revealed that the sample displayed much higher crystallinity structure and was clean from impurities after centrifugations. The outcome indicated the success of separation between MOF products and reactive medium during washing processes, leading to the effective pore activation of MOFs.
    Matched MeSH terms: Carbon Dioxide
  16. Cheong, Chee Yen, Rashidi Ahmad, Nesarajah, Kiran, Aida Bustam, Muhaimin Noor Azhar
    MyJurnal
    Diagnosis of pulmonary embolism (PE) remains a challenge in clinical practice, especially in emergency setting despite availability of various diagnostic tools. It is desirable to have a rapid and accurate bedside test to rule out PE.The aim of this study is to evaluate the diagnostic accuracyof CUEPED, a novel method of ruling out pulmonary embolism using a combination of end-tidal CO2(ETCO2), Compression Ultrasonography (CUS) and Transthoracic Echocardiography (TTE).In this pilot study, patients who presented to the Emergency Department at Univers it y Malaya Medical Centre with suspected acute PE from December 2013 to October 2014,who fulfilled the inclusion and exclusion criteria, were assessed using CUEPED. CUEPED was considered positive if the measured ETCO2 was less than 35 mmHg, or if there was presence of venous incompressibility in lower limb ultrasonography orif tricuspid annular plane systolic excursion (TAPSE) in transthoracic echocardiography was less than 1.6. All patients received a computed tomography pulmonary angiography (CTPA) for confirmation of diagnosis. Data obtained was analyzed to determine if a negative CUEPED has the potential to accurately rule out a PE. 30 patients (mean age = 48 years [SD = 13.6]) were involved with an equal distribut io nbetween gender. The incidence of PE was 56.7%. CUEPED had a sensitivity of 100% for PE. Negative CUEPED ruled out PE with a negative predictive value of 100%. Positive CUEPED ruled in PE with a low specificity of 53.8% and moderate positive predictive value of 73.9%. This diagnostic study showedthat a negative CUEPED is potentially accurate in ruling out PE.
    Matched MeSH terms: Carbon Dioxide
  17. Malakahmad A, Abualqumboz MS, Kutty SRM, Abunama TJ
    Waste Manag, 2017 Dec;70:282-292.
    PMID: 28935377 DOI: 10.1016/j.wasman.2017.08.044
    Malaysian authorities has planned to minimize and stop when applicable unsanitary dumping of waste as it puts human health and the environment at elevated risk. Cost, energy and revenue are mostly adopted to draw the blueprint of upgrading municipal solid waste management system, while the carbon footprint emissions criterion rarely acts asa crucial factor. This study aims to alert Malaysian stakeholders on the uneven danger of carbon footprint emissions of waste technologies. Hence, three scenarios have been proposed and assessed mainly on the carbon footprint emissions using the 2006 IPCC methodology. The first scenario is waste dumping in sanitary landfills equipped with gas recovery system, while the second scenario includes anaerobic digestion of organics and recycling of recyclable wastes such as plastic, glass and textile wastes. The third scenario is waste incineration. Besides the carbon footprint emissions criterion, other environmental concerns were also examined. The results showed that the second scenario recorded the lowest carbon footprint emissions of 0.251t CO2 eq./t MSW while the third scenario had the highest emissions of 0.646t CO2 eq./t MSW. Additionally, the integration between anaerobic digestion and recycling techniques caused the highest avoided CO2 eq. emissions of 0.74t CO2 eq./t MSW. The net CO2 eq. emissions of the second scenario equaled -0.489t CO2 eq./t MSW due to energy recovery from the biogas and because of recycled plastic, glass and textile wastes that could replace usage of raw material. The outcomes also showed that the first scenario generates huge amount of leachate and hazardous air constituents. The study estimated that a ton of dumped waste inside the landfills generates approximately 0.88m3 of trace risky compounds and 0.188m3 of leachate. As for energy production, the results showed that the third scenario is capable of generating 639kWh/t MSW followed by the second scenario with 387.59kWh/t MSW. The first scenario produced 296.79kWh/t MSW. In conclusion, the outcomes of this study recommend an integrated scenario of anaerobic digestion and recycling techniques to be employed in Malaysia.
    Matched MeSH terms: Carbon Dioxide
  18. Razi PZ, Abdul Razak H, Khalid NHA
    Materials (Basel), 2016 May 06;9(5).
    PMID: 28773465 DOI: 10.3390/ma9050341
    This study investigates the engineering performance and CO₂ footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO₂ footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.
    Matched MeSH terms: Carbon Dioxide
  19. Norfazillah Ab Manan, Rozita Hod, Hanizah Mohd Yusoff, Mazrura Sahani, Rosnah Ismail, Wan Rozita Wan Mahiyuddin
    Int J Public Health Res, 2016;6(1):707-712.
    MyJurnal
    Air pollution has been widely known to have an influence on health of the general population.
    Air pollution can result from natural causes, human activities and transboundary air pollution.
    Weather and climate play crucial role in determining the pattern of air quality. In recent years,
    air pollution and recurrent episodes of haze has become a major concern in Malaysia.
    Surveillance data on concentrations of main air pollutants such as carbon dioxide, (CO2),
    Nitrogen Dioxide (NO2), Ozone (O3), sulphur dioxide (SO2) and particulate matter (PM10)
    were found to be higher during the haze days and this may have an impact on health of the
    community as reflected by an increase in hospital admissions particularly the respiratory and
    cardiovascular diseases.
    Matched MeSH terms: Carbon Dioxide
  20. Hamid SBA, Chowdhury ZZ, Zain SM
    Materials (Basel), 2014 Apr 09;7(4):2815-2832.
    PMID: 28788595 DOI: 10.3390/ma7042815
    This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH). The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II) cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R² values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II) cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m²/g, whereas before base activation, it was only 1.22 m²/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II) cations from waste water.
    Matched MeSH terms: Carbon Dioxide
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links