Displaying publications 401 - 420 of 537 in total

Abstract:
Sort:
  1. Ali, M.A., Daud, A.S.M., Latip, R.A., Othman, N.H., Islam, M.A.
    MyJurnal
    The aim of the present study was to evaluate the effect of chicken nuggets addition on the degradation of canola oil during frying compared to the changes occurring when the same frying medium was simply heated at frying temperature as control. Heating or frying test was carried out at 185±5oC using electric fryer for 8 h/day for 3 consecutive days and the oil sample was collected every 4 h. The changes in fatty acids composition and physicochemical properties of the oil samples during frying and controlled heating experiments were monitored. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, polar compounds and viscosity of the oils all increased, whereas iodine value and C18:2/C16:0 ratio decreased as heating or frying progressed. The percentage of linoleic acid tended to decrease, whereas the percentages of palmitic acid increased. Gas chromatography analysis revealed that adding chicken nuggets to heated canola oil led to higher decrease in the ratio of C18.2/C16:0 compared to what was measured when the fat alone was heated at frying temperature. The presence of chicken nuggets accelerates the formation of polymerization products and polar compounds in canola oil during frying.
    Matched MeSH terms: Chickens
  2. Hasan NH, Ebrahimie E, Ignjatovic J, Tarigan S, Peaston A, Hemmatzadeh F
    PLoS One, 2016;11(6):e0156418.
    PMID: 27362795 DOI: 10.1371/journal.pone.0156418
    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.
    Matched MeSH terms: Chickens
  3. Usha, M.R., Fauziah, M., Tunung, R., Chai, L.C., Cheah, Y.K., Farinazleen, M.G., et al.
    MyJurnal
    Broiler part samples (80 fresh and 80 chilled) were examined for the prevalence and numbers of C. jejuni and C. coli by employing most-probable-number (MPN) and polymerase chain reaction (PCR) techniques. The prevalence of the bacteria was high where C. jejuni was detected in 92.5% fresh and 53.8% chilled samples while C. coli in 80.0% fresh and 56.3% chilled. The number of these bacteria in the positive fresh and chilled samples was from 3 to more than 2400 MPN/g and from 3 to 290 MPN/g, respectively. Antibiotic resistance test (using Kirby-Bauer disc diffusion method) on 10 C. jejuni and 13 C. coli isolates toward ampicillin, tobramycin, enrofloxacin, ciprofloxacin, tetracycline, cephalothin, gentamicin and norfloxacin revealed high resistance toward all antibiotics (20.0% - 100.0%). All isolates were resistant to at least two antibiotics. This study highlights the potential of multidrug-resistant C. jejuni and C. coli transmission to humans through fresh and chilled broiler parts. Consecutive studies with bigger sample sizes and covering all over Malaysia are warranted in future.
    Matched MeSH terms: Chickens
  4. Ong, S.B., Zuraini, M.I., Jurin, W.G., Cheah Y.K., Tunung, R., Chai, L.C., et al.
    MyJurnal
    Three restriction enzymes were used in Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) using the mitochondrial cytochrome b region to establish a differential diagnosis which detect and discriminate between three meat species: pork, cow and chicken. DNA was extracted from samples containing meat of a single animal such as raw pork (Sus scrofa domesticus), chicken (Gallus gallus) and cow (Bos taurus) as well as mixed samples of two species of animals in different ratios. The amplified 359 base pairs (bp) portion of the mitochondrial cyt b gene from pure or mixed samples in different ratios was cut using three different restriction enzymes resulting in species specific restriction fragment length polymorphism (RFLP). This technique proved to be extremely reliable in detecting the presence of low levels of target DNA obtained from a 0.25 mg component in a particular mixed meat sample. This revealed the cyt b region as highly conserved and consequently a good molecular marker for diagnostic studies. Thus, this technique can be applied to food authentication for the identification of different species of animals in food products.
    Matched MeSH terms: Chickens
  5. Cheah, Y.K., Tay, L.W., Aida, A.A., Son, R., Nakaguchi, T., Nishibuchi, M.
    MyJurnal
    Escherichia coli and Escherichia coli O157 were identified from “selom” (Oenanthe stolonifera), “pegaga” (Centella asiatica), beef, chicken, lamb, buffalo, “ulam Raja” (Cosmos caudatus) and “tenggek burung” (Euodia redlevi). The bacteria were recovered using chromagenic agar. Isolated Escherichia coli and Escherichia coli 0157 were further characterized by plasmid profiling and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The virulence genes of the isolates (VT1, VT2, LT, ST, eaeA, inV) that produces pathogenic Escherichia coli and 16S rRNA gene were screened by a multiplex PCR assay. The plasmid profiling analysis showed that out of 176 isolates, only 103 isolates contained plasmids. ERIC-PCR analysis generated amplified products in the range of ~150 bp to > 1000 bp categorizing isolates into a total of 52 different profiles. Multiplex PCR showed that 20 (32.3%) of the isolates carried eaeA gene, 6 (9.7%) isolates possessed inV genes, only 1 (1.6%) have VT2 genes and 1 (1.6%) as well carried VT1 genes, 2 (3.2%) of the isolates harboured LT genes, and only 1 (1.6%) isolate possessed ST genes. There were no correlation between plasmid, ERIC-PCR and virulence genes profiles.
    Matched MeSH terms: Chickens
  6. Aklilu, E., Nurhardy, A.D., Mokhtar, A., Zahirul, I.K., Siti Rokiah, A.
    MyJurnal
    Multi-drug resistant staphylococci including methicillin-resistant Staphylococcus aureus
    (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) are among the emerging
    pathogens and have become a threat to both human and animals. Foods of animal origin can
    easily be contaminated by these bacteria if handled unhygienically or exposed to contaminated
    environmental surfaces. The objective of this study was to investigate the occurrence of MRSA
    and MRSE in raw chicken meat sold at wet markets in Kota Bharu, Kelantan, Malaysia. One
    hundred fresh raw chicken meat samples were collected from three different wet markets in
    Kota Bharu, Kelantan. Routine isolation and identification, selective media (Brilliance MRSA2
    agar), antimicrobial sensitivity test (AST), minimum inhibitory concentration test (MIC), and
    polymerase chain reaction (PCR) amplification of nucA gene and the resistant gene, mecA
    were conducted. Based on bacteriology results and growth on selective media, MRSA and
    MRSE were detected in 43% (43/100) of the raw chicken meat samples. Using the PCR assay,
    77% (34/43) isolates were positive for nucA gene. The detection of these emerging multidrug
    resistant bacteria in chicken meat intended for human consumption implies the potential
    contamination of food items by the bacteria which in turn may pose risk to the public health.
    Matched MeSH terms: Chickens
  7. Barakatun Nisak Mohd Yusof, Ruzita Abd. Talib, Norimah A. Karim, Nor Azmi Kamarudin, Fatimah Arshad
    MyJurnal
    White and whole meal breads have been classified as high glycemic index (GI) foods which in turn produce the greatest rise in blood glucose. One of the commercial bread products in Malaysia known as Brown breads (BB) has been recently marketed as a healthy choice for diabetics due to its low GI value. This study was conducted to examine the effect of BB when eaten with different fillings on blood glucose response among healthy individuals and to describe the influences of these fillings in reducing blood glucose response. Five test meals using BB (BB eaten with baked beans, BB eaten with vegetable, BB eaten with apple, BB eaten with roast chicken and BB eaten with seaweeds) had been prepared for this study. Postprandial blood glucose response was determined for each test meal and reference food (glucose) that contained 50 g carbohydrate respectively. A total of 21 healthy subjects were recruited by advertisement to participate. Only 20 subjects (15 males, 5 females, Mean + SD Age : 24.4 + 3.7 years; BMI 23.4 + 3.0 kgm-2) completed this study. After an overnight fast, subjects consumed BB eaten with fillings according to the assigned group given and three repeated tests of reference food (glucose). Fasting capillary blood glucose samples were taken at time 0 and at 15, 30, 45, 60, 90 and 120 min respectively after the meal began. The blood glucose response was obtained by calculating the incremental area under the curve (AUC). Blood glucose response after consuming reference food (251.8 + 12.1 mmol.min/L) was significantly higher than all the test meals (p < 0.05). Among the test meals, BB eaten with baked beans produced the highest rise in blood glucose (97.0 + 16.9 mmol.min/L) whereas BB eaten with seaweeds demonstrated the lowest response in blood glucose (33.3 + 6.5 mmol.min/L) and the difference was statistically significant (p < 0.05). The postprandial blood glucose response after ingestion of BB when eaten with vegetable was 73.3 + 19.1 mmol.min/L followed by BB eaten with apple (58.9 + 12.2 mmol.min/L) and BB eaten with roast chicken (56.5 + 10.1 mmol.min/L). Generally, BB when eaten with fillings produced a slow rise in blood glucose response than the reference food. Combining this BB with fillings had the effect of reducing the postprandial blood glucose further.
    Matched MeSH terms: Chickens
  8. Garba, J.A., Rampal, L., Hejar, A.R., Salmiah, M.S.
    MyJurnal
    Dietary pattern analysis has emerged as important instruments to identify modifiable dietary risk factors for non-communicable diseases. The aim of this study was to determine the major dietary patterns among adolescents in Petaling District, Selangor and their associations with socio-demographic characteristics and obesity. An analytic cross- sectional study design was conducted in selected secondary schools in Petaling District. Sampling with probability proportionate to size was used and five schools were selected. Self-administered semi-quantitative food frequency questionnaire was used for data collection. Weight was measured with a digital bathroom scale (TANITA model) and height was measured using SECA body meter. Principal component factor analysis using varimax orthogonal transformation was used to identify the dietary patterns. Chi square was used to test for associations of dietary patterns with socio-demographic characteristics and obesity. Three major dietary patterns were identified: firstly, fruits and vegetables; secondly, sugar and fatand finally, meat and chicken which explained for 12.7%, 11.6% and 10.7% variation in food intake, respectively. There were significant associations between ethnicity, religion, family income, educational level of parents and the dietary patterns. However, there was no significant association between obesity and the dietary patterns. It may be more effective to describe a healthy diet using results of dietary pattern analysis in public health intervention, rather than describing single food items or nutrients. It is recommended that nutrition education programmes should be implemented in schools so as to prevent the development of obesity in the non-obese.
    Matched MeSH terms: Chickens
  9. Lee W, Syed A A, Leow CY, Tan SC, Leow CH
    Anal Biochem, 2018 08 15;555:81-93.
    PMID: 29775561 DOI: 10.1016/j.ab.2018.05.009
    Anti-salbutamol antibodies remain as important tools for the detection of salbutamol abuse in athletic doping. This study evaluated the feasibility and efficiency of the chicken (Gallus gallus domesticus) as an immunization host to generate anti-salbutamol scFv antibodies by phage display. A phage display antibody library was constructed from a single chicken immunized against salbutamol-KLH conjugate. After a stringent biopanning strategy, a novel scFv clone which was inhibited by free salbutamol recorded the highest affinity. This scFv was expressed as soluble and functional protein in Escherichia coli T7 SHuffle Express B (DE3) strain. Cross-reactivity studies of the scFv towards other relevant β2-agonists revealed that the scFv cross-reacted significantly towards clenbuterol. The determined IC50 of the scFv towards the two β2-agonists were; IC50 salbutamol = ∼0.310 μg/ml, IC50 clenbuterol = ∼0.076 μg/ml. The generated scFv demonstrated poor stability based on accelerated stability studies. The scFv was used to develop an competitive indirect ELISA (LOD = 0.125 μg/ml) for detection of parent salbutamol in spiked human urine (n = 18) with ∼83.4% reliability at the cut-off of 1 μg/ml currently implemented by WADA and may be of potential use in human doping urinalysis.
    Matched MeSH terms: Chickens
  10. Koh, S.P., Aziz, N., Sharifudin, S.A., Abdullah, R., Hamid, N.S.A., Sarip, J.
    Food Research, 2017;1(4):109-113.
    MyJurnal
    Foodborne illness is recognized as an emerging infectious disease. The incidence of foodborne
    infections is common and the majority cases are undiagnosed or unreported. Apart from some
    diarrhea or minor gastrointestinal problem, some foodborne pathogenic microbes may cause
    death, particularly to those people with weakened immune system. In this study, we have
    developed a new fermented papaya beverage using symbiotic culture of yeast and acetic acid
    bacteria under controlled biofermentation process. An in-vitro assessment of fermented papaya
    beverage against few foodborne pathogenic microorganism was conducted to determine
    its minimum bactericidal concentration (MBC>99). Three types of foodborne pathogen:
    Escherichia coli O157, Salmonella enterica serovar Typhimurium ATCC 53648, Salmonella
    enterica serovar Enteritidis (isolated from infectious chicken) were selected. From minimum
    bactericidal concentration (MBC>99) assay, both fermented papaya pulp and leaves beverages
    have shown 100% killing rate against three selected foodborne pathogenic microbes. Inversely,
    non-fermented papaya pulp and leaves beverages indicated no inhibition at all. In fact, further
    dilution of fermented papaya pulp and leaves beverages demonstrated different degree of
    MBC>99 and brix value, but the pH value remained less than 3.5. These findings indicated
    the combination of soluble solid compounds presents in both fermented papaya beverage and
    product acidity play an important role in the inhibition of pathogenic microorganisms. The
    preliminary promising results of this work have shown that the great potential of fermented
    papaya beverages as a preventive measure to reduce the incidence of foodborne illness.
    Matched MeSH terms: Chickens
  11. Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR
    Biomed Res Int, 2018;2018:7278459.
    PMID: 30175140 DOI: 10.1155/2018/7278459
    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
    Matched MeSH terms: Chickens
  12. Baghdadi A, Halim RA, Ghasemzadeh A, Ramlan MF, Sakimin SZ
    PeerJ, 2018;6:e5280.
    PMID: 30386686 DOI: 10.7717/peerj.5280
    Background: Corn silage is an important feed for intense ruminant production, but the growth of corn relies heavily on the use of chemical fertilizers. Sustainable crop production requires careful management of all nutrient sources available on a farm, particularly in corn-based cropping systems.

    Methods: Experiments were conducted to determine the appropriate technique of corn-legume intercropping in conjunction with the supplemental use of chemical fertilizers, organic manure, and biofertilizers (BFs). Acetylene reduction assays (ARAs) were also performed on corn and soybean roots.

    Results: Combining chemical fertilizers with chicken manure (CM) in a 50:50 ratio and applying 50% NPK+50% CM+BF produced fresh forage and dry matter (DM) yields that were similar to those produced in the 100% nitrogen (N), phosphorus (P), potassium (K) treatment. Among the lone fertilizer treatments, the inorganic fertilizer (100% NPK) treatment produced the highest DM yield (13.86 t/ha) of forage and outyielded the 100% CM (9.74 t/ha) treatment. However, when CM was combined with NPK, the resulting DM yield of forage (13.86 t/ha) was the same as that resulting from 100% NPK (13.68 t/ha). Compared with CM applications alone, combinations of NPK and CM applications resulted in increased plant height, crop growth rates (CGRs) and leaf area index (LAI), but the values of these parameters were similar to those resulting from 100% NPK application. Fertilizers in which the ratio was 50% CM+50% NPK or 50% CM+50% NPK+BF resulted in protein yields that were similar to those resulting from conventional fertilizers. Similarly, the CP content did not significantly differ between applications of the 100% NPK and 50% CM+50% NPK fertilizers. The use of BFs had no significant impact on improving either the yield or quality of forage fertilized with inorganic or organic fertilizer. Lactic acid responded differently to different fertilizer applications and was significantly higher in the fertilized plots than in the unfertilized plots. Compared with treatments of lone chemical and lone organic manure fertilizers, treatments involving applications of BF and a combination of BF and NPK or CM resulted in higher ARA values.

    Discussion: There is no simple and easy approach to increase biological nitrogen fixation (BNF) in grain legumes grown as part of a cropping system under realistic farm field conditions. Overall, evidence recorded from this study proves that, compared with corn monocrops combined with CM and chemical fertilizers, corn-soybean intercrops could increase forage yields and quality, produce higher total protein yields, and reduce the need for protein supplements and chemical fertilizers.

    Matched MeSH terms: Chickens
  13. Othman I, Aklilu E
    Vet World, 2019;12(3):472-476.
    PMID: 31089320 DOI: 10.14202/vetworld.2019.472-476
    Aim: This study aimed to investigate the occurrence of Marek's disease (MD) in five poultry farms in Malaysia using postmortem examination, histopathology, and polymerase chain reaction (PCR).

    Materials and Methods: Tissue samples were collected from 24 broiler breeder chickens from four commercial broiler breeder farms and six layer chickens from one layer farm. Gross and histopathological examinations and PCR amplification of the gene encoding for avian MD herpesvirus (MDV-1) were conducted.

    Results: Gross pathological changes including hepatomegaly, splenomegaly, lymphomatous lesion at the mesentery, oviduct atrophy, and follicular atresia with lymphomatous were observed, whereas diffuse multifocal whitish infiltration of the spleen, neoplastic infiltration in the liver, intrafollicular lymphoid infiltration of the bursa of Fabricius, and lymphomatous tumor at the mesentery were seen on histopathological examinations. Confirmation by PCR showed that a total of 16 (53.33%) samples were positive for avian MDV-1. Although the outbreak involved a much larger number of birds in the respective farms, our investigation was limited based on resource and time frame allocated for the study.

    Conclusion: The findings from this study help in emphasizing the potential threats of MDV to the poultry industry globally, in general, and in Malaysia, in particular. As the scope of the current study is limited, future studies focusing on MDV pathogenesis, typing, and causes of vaccine failures are recommended.

    Matched MeSH terms: Chickens
  14. Mohamed Sohaimi N, Bejo MH, Omar AR, Ideris A, Mat Isa N
    PLoS One, 2019;14(12):e0225863.
    PMID: 31891571 DOI: 10.1371/journal.pone.0225863
    Fowl adenovirus (FAdV) is the causative agent of inclusion body hepatitis (IBH) in chickens with significant economic losses due to high mortality and poor production. It was objectives of the study to attenuate and determine the molecular characteristic of FAdV isolate (UPM1137) of Malaysia passages in primary chicken embryo liver (CEL) cells. The cytopathic effect (CPE) was recorded and the present of the virus was detected by polymerase chain reaction (PCR). Nucleotide and amino acid changes were determined and a phylogenetic tree was constructed. The pathogenicity and immunogenicity of the virus at passage 35 (CEL35) with virus titre of 106.7TCID50/mL was determined in day old specific pathogen free (SPF) chicks via oral or subcutaneous route of inoculation. The study demonstrated that the FAdV isolate was successfully propagated and attenuated in CEL cells up to 35th consecutive passages (CEL35) with delayed of CPE formation within 48 to 72 post inoculation (pi) from CEL20 onwards. The virus caused typical CPE with basophilic intranuclear inclusion bodies, refractile and clumping of cells. The virus is belong to serotype 8b with substitution of amino acid at position 44, 133 and 185 in L1 loop of hexon gene and in knob of fiber gene at position 348 and 360 at CEL35. It is non-pathogenic, but immunogenic in SPF chickens. It was concluded that the FAdV isolate was successfully attenuated in CEL cells with molecular changes in major capsid proteins which affect its infectivity in cell culture and SPF chickens.
    Matched MeSH terms: Chickens
  15. Zhang X, Deng T, Lu J, Zhao P, Chen L, Qian M, et al.
    Transbound Emerg Dis, 2020 May;67(3):1349-1355.
    PMID: 31943814 DOI: 10.1111/tbed.13477
    Infectious bronchitis virus (IBV), an ongoing emergence enveloped virus with a single-stranded positive-sense RNA genome, belongs to the Gammacoronavirus genus in the Coronaviridae family. IBV-associated tracheitis, nephritis, salpingitis, proventriculitis and egg drop have caused devastating economic losses to poultry industry worldwide. Since the end of 2018, a remarkably increasing number of commercial broilers and layers, vaccinated or not, were infected with IBV in China. Here, we described two IB outbreaks with severe respiratory system or kidney injury in IBV-vaccinated commercial poultry farms in central China. Other possible causative viral pathogens, including avian influenza virus (AIV), Newcastle disease virus (NDV) and Kedah fatal kidney syndrome virus (KFKSV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and three virulent IBV strains, HeN-1/China/2019, HeN-2/China/2019 and HeN-101/China/2019, were identified. Although the gross pathologic appearance of these two IB outbreaks was different, the newly identified IBV strains were all closely related to the ck/China/I0529/17 strain and grouped into GI-19 genotype clade based on the sequencing and phylogenetic analysis of the complete S1 genes. Moreover, there are still some evolutionary distance between the newly identified IBV strains, HeN-101/China/2019 in particular, and other GI-19 strains, suggesting that Chinese IBV strains constantly emerge and evolve towards different directions. In conclusion, this study provided an insight of the recently emerging IBV outbreaks in IBV-vaccinated commercial poultry farms and identified the genetic characteristics of three virulent GI-19 IBV strains, which shows the need to carry out proper preventive measures and control strategies.
    Matched MeSH terms: Chickens
  16. Basit MA, Arifah AK, Loh TC, Saleha AA, Salleh A, Kaka U, et al.
    Saudi J Biol Sci, 2020 Jun;27(6):1503-1513.
    PMID: 32489287 DOI: 10.1016/j.sjbs.2020.04.017
    Due to antimicrobial resistance and the public health hazard of antibiotic growth promoters, there is a grave need to find potential alternatives for sustainable poultry production. Piper betle (PB) and Persicaria odorata (PO) are herbs, which have been reported for antimicrobial, antioxidant, and anti-inflammatory properties. The present study aimed to estimate the influence of different dose supplementation of Piper betle leaf meal (PBLM) and Persicaria odorata leaf meal (POLM) on growth performance, ileal digestibility and gut morphology of broilers chickens. A total of 210 one day-old broiler chicks were randomly grouped into 7 treatments, and each treatment group has 3 replicates (n = 10) with a total number of 30 chicks. The treatments included T1 control (basal diet (BD) with no supplementation), T2 (BD + 2 g/kg PBLM); T3 (BD + 4 g/kg PBLM), T4 (BD + 8 g/kg PBLM), T5 (BD + 2 g/kg POLM), T6 (BD + 4 g/kg POLM), T7 (BD + 8 g/kg POLM). Growth performance, gut morphology and ileal digestibility were measured. Except for T4 (8 g/kg PBLM), graded dose inclusion of PBLM and POLM increased (P 
    Matched MeSH terms: Chickens
  17. Noordin MAM, Noor MM, Aizat WM
    Mini Rev Med Chem, 2020;20(13):1287-1299.
    PMID: 32348218 DOI: 10.2174/1389557520666200429101942
    It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years worldwide. Such alarming statistics require immediate attention to improve the health of the aging population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts have been used in traditional medicine as potent antioxidant sources. Although many experiments had reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers that combine both subjects. In this review, we have collected and discussed various bioactive compounds from 26 different plant species known to affect both longevity and fertility. These compounds, including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical trial should be considered in the future to measure the effects of these bioactive compounds on human health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements or potential medical drugs to ensure a healthy aging population.
    Matched MeSH terms: Chickens
  18. Mohamed DA, Sazili AQ, Teck Chwen L, Samsudin AA
    Animals (Basel), 2020 Jun 04;10(6).
    PMID: 32512947 DOI: 10.3390/ani10060981
    Selenium (Se) is able to transform from inorganic to organic forms via many bacterial species. This feature is being considered for delivering more bioavailable selenium compounds such as selenocysteine and selenomethionine for human and animal diet. This study investigated the effects of bacterial selenoprotein versus inorganic Se on the carcass characteristics, breast meat selenium content, antioxidant status, and meat quality of broiler chickens. One hundred and eighty chicks were randomly allotted to five treatments of a basal diet supplemented with no Se, sodium selenite, Enterobactercloacae Selenium (ADS1-Se), Klebsiellapneumoniae-Selenium (ADS2-Se), and Stenotrophomonasmaltophilia-Selenium (ADS18-Se). The results showed that bacterial selenoprotein has the ability to deposit more Se in the breast meat compared to sodium selenite. Both Se sources reduced breast meat drip loss, cooking loss, shear force, and 2-thiobarbituric acid reactive substances (TBARS) significantly. It also increased total antioxidant (TAC) and glutathione peroxidase (GSH-Px) in comparison with the negative control. The highest activity of (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) was found in bacterial selenoprotein. In conclusion, bacterial selenoprotein is more efficient than sodium selenite in increasing the breast meat Se deposition and oxidative capacity of broiler chickens. Therefore, it can be effectively used to produce Se-rich meat as a functional food.
    Matched MeSH terms: Chickens
  19. Maru A, Ahmed OH, Primus WC, Jeffary AV
    Sci Rep, 2021 06 15;11(1):12545.
    PMID: 34131184 DOI: 10.1038/s41598-021-91426-6
    Unbalanced utilization of nitrogen (N) rice not economically viable neither is this practice environmental friendly. Co-application of biochar and urea could reduce the unbalanced use of this N fertilizer in rice cultivation. Thus, a field study was carried out to: (i) determine the effects of chicken litter biochar and urea fertilization on N concentration in soil solution of a cultivated rice (MR219) using dielectric measurement at a low frequency and (ii) correlate soil dielectric conductivity with rice grain yield at maturity. Dielectric response of the soil samples at 20, 40, 55, and 75 days after transplanting were determined using an inductance-capacitance-resistance meter HIOKI 3522-50 LCR HiTESTER. Selected soil chemical properties and yield were determined using standard procedures. The dielectric conductivity and permittivity of the soil samples measured before transplanting the rice seedlings were higher than those for the soil samples after transplanting. This was due to the inherent nitrogen of the chicken litter biochar and the low nitrogen uptake at the transplanting stage. The soil N response increased with increasing measurement frequency and N concentration. The permittivity of the soil samples was inversely proportional to frequency but directly proportional to N concentration in the soil solution. The estimated contents of N in the soil using the dielectric conductivity approach at 1000 Hz decreased with increasing days of fertilization and the results were similar to those of soil NH4+ determined using chemical analysis. The conductivity measured within 1000 Hz and 100,000 Hz correlated positively with the rice grain yield suggesting that nitrogen concentration of the soil can be used to estimate grain yield of the cultivated rice plants.
    Matched MeSH terms: Chickens
  20. Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA
    BMC Vet Res, 2021 Aug 21;17(1):281.
    PMID: 34419016 DOI: 10.1186/s12917-021-02964-0
    BACKGROUND: The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens.

    RESULTS: Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15-20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p 

    Matched MeSH terms: Chickens
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links