Displaying publications 21 - 40 of 94 in total

Abstract:
Sort:
  1. Armania N, Yazan LS, Musa SN, Ismail IS, Foo JB, Chan KW, et al.
    J Ethnopharmacol, 2013 Mar 27;146(2):525-35.
    PMID: 23353897 DOI: 10.1016/j.jep.2013.01.017
    Dillenia suffruticosa (Family: Dilleniaceae) locally known as Simpoh air has been reported to be used traditionally to treat cancerous growth. Therefore, the present study was attempted to investigate the antioxidant and cytotoxic properties of different parts (root, flower, fruit and leaf) of D. suffruticosa extracts.
    Matched MeSH terms: G2 Phase Cell Cycle Checkpoints/drug effects
  2. Navanesan S, Abdul Wahab N, Manickam S, Sim KS
    PLoS One, 2015;10(8):e0135995.
    PMID: 26287817 DOI: 10.1371/journal.pone.0135995
    Leptospermum flavescens Sm. (Myrtaceae), locally known as 'Senna makki' is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 μg/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects*
  3. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH
    Int Immunopharmacol, 2012 Apr;12(4):594-602.
    PMID: 22330084 DOI: 10.1016/j.intimp.2012.01.014
    Interleukin-6 is one of the factors affecting sensitivity to cytotoxic agents. Therefore, the current study was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition at a dose-dependent manner as determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,Sdiphenyltetrazolium bromide) reduction assay. Both laser scanning confocal microscopy and TUNEL assay showed typical apoptotic features in treated cells. The studies conducted seems to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. Our results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells. In contrast, HeLa and Caov-3 cells were still sensitive to cisplatin and zerumbone, even in the presence of exogenous IL-6. However, membrane-bound IL-6 receptor is still intact after zerumbone treatment as demonstrated using an immune-fluorescence technique. This study concludes that the compound, zerumbone inhibits both cancer cell growth through the induction of apoptosis, arrests cell cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells. Therefore, zerumbone is a potential candidate as a useful chemotherapeutic agent in treating both cervical and ovarian cancers in future.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  4. Arulnathan SB, Leong KH, Ariffin A, Kareem HS, Cheah KKH
    Anticancer Agents Med Chem, 2020;20(9):1072-1086.
    PMID: 32188392 DOI: 10.2174/1871520620666200318100051
    BACKGROUND: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines.

    AIM AND OBJECTIVES: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest.

    METHODS: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry.

    RESULTS: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced.

    CONCLUSION: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.

    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  5. Anasamy T, Thy CK, Lo KM, Chee CF, Yeap SK, Kamalidehghan B, et al.
    Eur J Med Chem, 2017 Jan 05;125:770-783.
    PMID: 27723565 DOI: 10.1016/j.ejmech.2016.09.061
    This study seeks to investigate the relationship between the structural modification and bioactivity of a series of tribenzyltin complexes with different ligands and substitutions. Complexation with the N,N-diisopropylcarbamothioylsulfanylacetate or isonicotinate ligands enhanced the anticancer properties of tribenzyltin compounds via delayed cancer cell-cycle progression, caspase-dependent apoptosis induction, and significant reduction in cell motility, migration and invasion. Halogenation of the benzyl ring improved the anticancer effects of the tribenzyltin compounds with the N,N-diisopropylcarbamothioylsulfanylacetate ligand. These compounds also demonstrated far greater anticancer effects and selectivity than cisplatin and doxorubicin, which provides a rationale for their further development as anticancer agents.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  6. Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, et al.
    PMID: 24947113 DOI: 10.1186/1472-6882-14-197
    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects*
  7. Komarasamy TV, Sekaran SD
    J Oleo Sci, 2012;61(4):227-39.
    PMID: 22450124
    Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects*
  8. Syam S, Abdul AB, Sukari MA, Mohan S, Abdelwahab SI, Wah TS
    Molecules, 2011 Aug 23;16(8):7155-70.
    PMID: 21862957 DOI: 10.3390/molecules16087155
    Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects*
  9. Zulkepli NA, Rou KV, Sulaiman WN, Salhin A, Saad B, Seeni A
    Asian Pac J Cancer Prev, 2011;12(1):259-63.
    PMID: 21517268
    One of the main aims of cancer chemopreventive studies is to identify ideal apoptotic inducers, especially examples which can induce early apoptotic activity. The present investigation focused on chemopreventive effects of a hydrazone derivative using an in vitro model with tongue cancer cells. Alteration in cell morphology was ascertained, along with stage in the cell cycle and proliferation, while living-dead status of the cells was confirmed under a confocal microscope. In addition, cytotoxicity test was performed using normal mouse skin fibroblast cells. The results showed that the compound inhibited the growth of tongue cancer cells with an inhibitory concentration (IC₅₀) of 0.01 mg/ml in a dose and time-dependent manner, with a two-fold increase in early apoptotic activity and G0G1 phase cell cycle arrest compared to untreated cells. Exposure to the compound also resulted in alterations of cell morphology including vacuolization and cellular shrinkage. Confocal microscope analysis using calcein and ethidium staining confirmed that the compound caused cell death, whereas no cytotoxic effects on normal mouse skin fibroblast cells were observed. In conclusion, the findings in this study suggested that the hydrazone derivative acts as an apoptotic inducer with anti-proliferative chemopreventive activity in tongue cancer cells.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  10. Wong CC, Lim SH, Sagineedu SR, Lajis NH, Stanslas J
    Pharmacol Res, 2016 05;107:66-78.
    PMID: 26940565 DOI: 10.1016/j.phrs.2016.02.024
    SRJ09 (3,19-(2-bromobenzylidene)andrographolide), a semisynthetic andrographolide (AGP) derivative, was shown to induce G1 cell cycle arrest and eventually apoptosis in breast and colon cancer cell lines. The present investigation was carried out to elucidate the mechanisms cell cycle arrest and apoptosis and evaluate the in vivo antitumor activity of SRJ09. The in vitro growth inhibitory properties of compounds were assessed in colon (HCT-116) and breast (MCF-7) cancer cell lines. Immunoblotting was utilized to quantitate the protein levels in cells. The gene expressions were determined using reverse transcriptase PCR (RT-PCR). Pharmacokinetic investigation was carried out by determining SRJ09 levels in plasma of Balb/C mice using HPLC. In vivo antitumor activity was evaluated in athymic mice carrying HCT-116 colon tumor xenografts. SRJ09 displayed improved in vitro activity when compared with AGP by producing rapid cell killing effect in vitro. Its activity was not compromised in MES-SA/Dx5 multidrug resistant (MDR) cells expressing p-glycoprotein. Cells treated with SRJ09 (0.1-10μM) displayed increased p21 protein level, which corresponded with gene expression. Whereas CDK4 protein level and gene expression was suppressed. The treatment did not affect cyclin D1. Changes of these proteins paralleled G1 cell cycle arrest in both cell lines as determined by flow cytometry. Induction of apoptosis by SRJ09 in HCT-116 cells which occurred independent of p53 and bcl-2 was inhibited in the presence of caspase 8 inhibitor, implicating the extrinsic apoptotic pathway. A single dose (100mg/kg, i.p) of SRJ09 produced a plasma concentration range of 12-30.4μM. At 400mg/kg (q4dX3), it significantly retarded growth of tumor xenografts. The antitumor activity of SRJ09 is suggested mediated via the induction of p21 expression and suppression of CDK-4 expression without affecting cyclin D1 to trigger G1 arrest leading to apoptosis.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  11. Chan CK, Chan G, Awang K, Abdul Kadir H
    Molecules, 2016 Mar 21;21(3):385.
    PMID: 27007366 DOI: 10.3390/molecules21030385
    Deoxyelephantopin (DET), one of the major sesquiterpene lactones derived from Elephantopus scaber was reported to possess numerous pharmacological functions. This study aimed to assess the apoptosis inducing effects and cell cycle arrest by DET followed by elucidation of the mechanisms underlying cell death in HCT116 cells. The anticancer activity of DET was evaluated by a MTT assay. Morphological and biochemical changes were detected by Hoescht 33342/PI and Annexin V/PI staining. The results revealed that DET and isodeoxyelephantopin (isoDET) could be isolated from the ethyl acetate fraction of E. scaber leaves via a bioassay-guided approach. DET induced significant dose- and time-dependent growth inhibition of HCT116 cells. Characteristics of apoptosis including nuclear morphological changes and externalization of phosphatidylserine were observed. DET also significantly resulted in the activation of caspase-3 and PARP cleavage. Additionally, DET induced cell cycle arrest at the S phase along with dose-dependent upregulation of p21 and phosphorylated p53 protein expression. DET dose-dependently downregulated cyclin D1, A2, B1, E2, CDK4 and CDK2 protein expression. In conclusion, our data showed that DET induced apoptosis and cell cycle arrest in HCT116 colorectal carcinoma, suggesting that DET has potential as an anticancer agent for colorectal carcinoma.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  12. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  13. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  14. Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652854 DOI: 10.3390/molecules26051277
    (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
    Matched MeSH terms: G2 Phase Cell Cycle Checkpoints/drug effects
  15. Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N
    Nutr Cancer, 2020;72(5):826-834.
    PMID: 31433251 DOI: 10.1080/01635581.2019.1654530
    Introduction:Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  16. Qazzaz ME, Raja VJ, Lim KH, Kam TS, Lee JB, Gershkovich P, et al.
    Cancer Lett, 2016 Jan 28;370(2):185-97.
    PMID: 26515390 DOI: 10.1016/j.canlet.2015.10.013
    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 µM). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8-16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  17. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: G1 Phase Cell Cycle Checkpoints/drug effects
  18. Hammadi NI, Abba Y, Hezmee MNM, Razak ISA, Kura AU, Zakaria ZAB
    In Vitro Cell Dev Biol Anim, 2017 Dec;53(10):896-907.
    PMID: 28916966 DOI: 10.1007/s11626-017-0197-3
    Cockle shell-derived calcium carbonate nanoparticles have shown promising potentials as slow drug-releasing compounds in cancer chemotherapy. In this study, we evaluated the in vitro efficacy of docetaxel (DTX)-loaded CaCO3NP on 4T1 cell line. This was achieved by evaluating the following: cytotoxicity using MTT assay, fluorescence imaging, apoptosis with Annexin V assay, cell cycle analysis, scanning (SEM) and transmission electron microscopy (TEM), and scratch assay. Based on the results, DTX-CaCO3NP with a DTX concentration of 0.5 μg/mL and above had comparable cytotoxic effects with free DTX at 24 h, while all concentrations had similar cytotoxic effect on 4T1 cells at 48 and 72 h. Fluorescence and apoptosis assay showed a higher (p cells in both free DTX and DTX-CaCO3NP groups. Cell cycle analysis showed cycle arrest at subG0 and G2/M phases in both treatment groups. SEM showed presence of cellular blebbing, while TEM showed nuclear fragmentation, apoptosis, and vacuolation in the treatment groups. Scratch assay showed lower (p cells as free DTX, and since it has a slow release rate, it is a more preferred substitute for free DTX.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  19. Shamsee ZR, Al-Saffar AZ, Al-Shanon AF, Al-Obaidi JR
    Mol Biol Rep, 2019 Feb;46(1):381-390.
    PMID: 30426385 DOI: 10.1007/s11033-018-4482-3
    Lantana camara is an important medicinal plant that contains many active compounds, including pentacyclic triterpenoids, with numerous biological activities. The present study was conducted to evaluate the anti-oxidant, anti-tumour, and cell cycle arrest properties of chemical compounds extracted from L. camara leaves. Four compounds were identified after subjecting the plant methanolic extract to LC-MS/MS analysis: lantadene A, lantadene B, icterogenin, and lantadene C. Potential antioxidant activity was examined using 2, 2-diphenyl-1-picrylhydrazyl and compared with vitamin C as a control. Lantadene A and B were confirmed to possess the highest scavenging activity, while icterogenin and lantadene C exhibited a lesser antioxidant effect. All extracted compounds exerted a dose-dependent reduction in MCF-7 cell viability; however, lantadene B showed the highest anti-cancer activity, with an IC50 of 112.2 μg mL-1, and was therefore used in subsequent experiments. The results also confirmed the significant release of caspase 9 in a dose-dependent pattern following treatment of MCF-7 cells with a range of lantadene B concentrations. Lantadene B was found to induce MCF-7 cell cycle arrest in G1, blocking the G1/S transition with a maximum significant (p ≤ 0.01) cell count of 80.35% at 25 µg mL-1. No significant changes were observed in S phase, but a decrease in the MCF-7 population was exhibited in G2/M phase.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
  20. Che Mat MF, Mohamad Hanif EA, Abdul Murad NA, Ibrahim K, Harun R, Jamal R
    Mol Biol Rep, 2021 Feb;48(2):1493-1503.
    PMID: 33590411 DOI: 10.1007/s11033-021-06144-z
    Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36-like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p cell cycle arrest and decreased cell proliferation. Downstream analysis showed that the sub-lethal dose of temozolomide and siZFP26L2 caused major upregulation of BCL2-associated X, apoptosis regulator (BAX). ZFP36L2 has oncogenic and chemosensitive characteristics and may play an important role in gliomagenesis through cell proliferation, cell cycle arrest and apoptosis. This suggests that RNAi combined with chemotherapy treatment such as temozolomide may be a potential GBM therapeutic intervention in the future.
    Matched MeSH terms: Cell Cycle Checkpoints/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links