Displaying publications 21 - 40 of 63 in total

Abstract:
Sort:
  1. Poobathy, Ranjetta, Rahmad Zakaria, Syed Mohd. Edzham Syed Hamzah, Subramaniam, Sreeramanan
    Trop Life Sci Res, 2016;27(11):15-19.
    MyJurnal
    The terrestrial Ludisia discolor, also referred to as the jewel orchid is prized for
    the quality of its leaves. L. discolor is known as a medicinal herb and is touted for its heatand
    pathogen-resisting qualities. L. discolor is valuable in the production of both flavonoids
    and anthocyanins, antioxidants that are exalted in the health industry. Plant cell cultures
    have emerged as alternative sources of anthocyanin production. Plant protoplast cultures
    are used frequently in transient gene expression studies and in the establishment of callus
    and cell suspension cultures. Benefits of plant protoplast system include similarity to cells
    found in plant tissues, reproduction under controlled conditions, and prevention of masking
    of stress responses to previous handling techniques. A study was conducted to assess the
    amenability of the stem and leaves of L. discolor to protoplast isolation. The stem and leaf
    segments were weighed, sliced into thin layers, immersed in a digestion medium, washed
    and then cultured onto a recovery medium. Results indicated that the production of plant
    protoplasts from L. discolor may be viewed as an alternative in the generation of cell
    cultures and ultimately in the production of anthocyanins from the cell cultures.
    Matched MeSH terms: Anthocyanins
  2. Rabeta, M.S., Lai, S.Y.
    MyJurnal
    Antioxidant capacity of Ocimum tenuiflorum L. or ‘ruku’ were determined in this study. Fresh
    leaves of Ocimum tenuiflorum was subjected to freeze drying, vacuum drying and processed
    into fermented and unfermented tea. The samples were extracted using distilled water and the
    total phenolics, total flavonoids, condensed tannin content, anthocyanins and total antioxidant
    capacity (TAC) were assessed, measured with ferric reducing antioxidant power (FRAP)
    and 1,1-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH) assays. The results
    showed that drying the fresh leaves of Ocimum tenuiflorum and processing them into tea leaves
    significantly increase (P < 0.05) the antioxidant capacity, total phenolic content, total flavonoid
    content, and condensed tannin content. However, anthocyanins content showed reduction
    after drying. In the present study, it can be concluded that the vacuum drying method seem
    to produce a product with higher quality of antioxidant properties than freeze drying. Hence,
    vacuum drying can be used to replace freeze drying as it is also cheaper than freeze drying.
    Matched MeSH terms: Anthocyanins
  3. Siti Azima, A.M., Noriham, A., Manshoor, N.
    MyJurnal
    The plant extract serves not only as a good source of bioactive compounds but also as natural pigment that can be applied as colourants in food and pharmaceutical products. The aim of this study were to determine the anthocyanin content of Garcinia mangostana peel extract (GMPE), Clitoria ternatea extract (CTE) and Syzigium cumini extract (SCE) in relation to their antioxidant activity and their colour properties. The antioxidant activities related to the phenolic constituents including anthocyanin content were determined based on the EC50 of DPPH radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP) assay. The colour properties of the plant extracts were measured based on their degradation index (DI), indices of polymeric colour (PC) and colour density (CD). GMPE showed higher FRAP value and lower EC50 value which were 79.37 mmoles/g and 0.11 mg/ml, respectively, as compared to SCE extract with FRAP value, 25.66 mmoles/g and EC50 value, 0.22 mg/ml. Total monomeric anthocyanin (tmAcy) exhibited a strong correlation between FRAP assay (r2 = 0.998) and DPPH assay (r2 = 0.859). GMPE showed high CD (1.63 AU), moderate PC (0.18 AU) but low in DI (1.19 AU) while SCE exhibited low in CD (0.55 AU) and PC (0.07 AU) but moderate DI (1.26 AU). CTE exhibited high in DI (5.39 AU) and PC (0.19 AU) but moderate in CD (0.55). Hence, it can be concluded that colour pigment obtained from GMPE exhibited high antioxidant activity and better colour properties as compared to SCE and the strong correlation between tmAcy and two antioxidant activity assays which are FRAP and DPPH indicated that monomeric anthocyanin plays a major role in antioxidant activity of these plant extracts.
    Matched MeSH terms: Anthocyanins
  4. Tee YK, Balasundram SK, Ding P, M Hanif AH, Bariah K
    J Sci Food Agric, 2019 Mar 15;99(4):1700-1708.
    PMID: 30206959 DOI: 10.1002/jsfa.9359
    BACKGROUND: A series of fluorescence indices (anthocyanin, flavonol, chlorophyll and nitrogen balance) were deployed to detect the pigments and colourless flavonoids in cacao pods of three commercial cacao (Theobroma cacao L.) genotypes (QH1003, KKM22 and MCBC1) using a fast and non-destructive multiparametric fluorescence sensor. The aim was to determine optimum harvest periods (either 4 or 5 months after pod emergence) of commercial cacao based on fluorescence indices of cacao development and bean quality.

    RESULTS: As pod developed, cacao exhibited a rise with the peak of flavonol occurring at months 4 and 5 after pod maturity was initiated while nitrogen balance showed a decreasing trend during maturity. Cacao pods contained high chlorophyll as they developed but chlorophyll content declined significantly on pods that ripened at month 5.

    CONCLUSION: Cacao pods harvested at months 4 and 5 can be considered as commercially-ready as the beans have developed good quality and comply with the Malaysian standard on cacao bean specification. Thus, cacao pods can be harvested earlier when they reach maturity at month 4 after pod emergence to avoid germinated beans and over fermentation in ripe pods harvested at month 5. © 2018 Society of Chemical Industry.

    Matched MeSH terms: Anthocyanins
  5. Si LY, Ali SAM, Latip J, Fauzi NM, Budin SB, Zainalabidin S
    Life Sci, 2017 Dec 15;191:157-165.
    PMID: 29066253 DOI: 10.1016/j.lfs.2017.10.030
    AIMS: Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI.

    MAIN METHODS: Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks.

    KEY FINDINGS: Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle.

    SIGNIFICANCE: These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future.

    Matched MeSH terms: Anthocyanins/isolation & purification; Anthocyanins/therapeutic use*; Anthocyanins/chemistry
  6. Aishah, B., Nursabrina, M., Noriham, A., Norizzah, A.R., Mohamad Shahrimi, H.
    MyJurnal
    There are many factors influencing the stability and color variation of natural colorant anthocyanin and pH is among the most significant factor. This study aims to determine the stability of the anthocyanins in freeze-dried Hibiscus sabdariffa, Melastoma malabathricum and Ipomoea batatas in various acidic pH (pH 2.0, 2.5, 3.0, 3.5, 4.0 and 4.5). Total monomeric anthocyanin, degradation index, color density and percent polymeric color were analyzed to determine anthocyanins degradation and their color variations. Among the samples, H.sabdariffa contain the highest monomeric anthocyanins (163.3 mg/L) followed by M. malabathricum (49.9 mg/L) and the lowest is I.batatas (13.8 mg/L). Monomeric anthocyanins from I.batatas were found to be very stable and not affected by changes in pH than in H. sabdariffa and M. malabathricum. However, degradation index (DI) of H. sabdariffa was the lowest with value of 0.365 ± 0.049 at pH 3.5. The lowest percentage of polymeric color (4.94 ± 0.64) was also shown by H. sabdariffa at pH 2.5 and maintained a deep red color with increasing pH indicating higher color stability compared to M. malabathricum and I. batatas. Overall, natural pigment in H. sabdariffa was found to be the most stable in both monomeric anthocyanin content and chromaticity properties. These results provided information that will further proven the potential usage of H. sabdariffa, M. malabathricum and I. batatas as natural coloring agents to replace the synthetic colorant in food and beverage industries.
    Matched MeSH terms: Anthocyanins
  7. Chew LY, Teng SK, Neo YP, Sim YY, Chew SC
    J Oleo Sci, 2024;73(3):275-292.
    PMID: 38432993 DOI: 10.5650/jos.ess23111
    Roselle is an annual botanical plant that widely planted in different countries worldwide. Its different parts, including seeds, leaves, and calyces, can offer multi-purpose applications with economic importance. The present review discusses the detailed profile of bioactive compounds present in roselle seeds, leaves, and calyces, as well as their extraction and processing, to explore their potential application in pharmaceutical, cosmetic, nutraceutical, food and other industries. Roselle seeds with high phenolics, fiber, and protein contents, which are suitable to use in functional food product development. Besides, roselle seeds can yield 17-20% of roselle seed oil with high content of linoleic acid (35.0-45.3%) and oleic acid (27.1- 36.9%). This unique fatty acid composition of roselle seed oil makes it suitable to use as edible oil to offer the health benefits of essential fatty acid. Moreover, high contents of tocopherols, phenolics, and phytosterols were detected in roselle seed oil to provide nutritional, pharmaceutical, and therapeutic properties. On the other hand, roselle leaves with valuable contents of phenols, flavonoids, organic acid, and tocopherols can be applied in silver nanoparticles, food product development, and the pharmaceutical industry. Roselle calyces with high content of anthocyanins, protocatechuic acids, and organic acids are widely applied in food and colorant industries.
    Matched MeSH terms: Anthocyanins
  8. Lasekan O
    Curr Opin Clin Nutr Metab Care, 2014 Nov;17(6):589-95.
    PMID: 25159559 DOI: 10.1097/MCO.0000000000000109
    Berries and berry extracts are known to possess properties (i.e., phenolic acids, flavonoids, and anthocyanins) that make them important in disease prevention. Observational studies have shown that many berries may hold promise for public health. However, the long-term impact of berries intake on specific populations and their functionality claims has not been fully tested. In addition, although several biological effects which are based on epidemiological studies have been explained scientifically, the mechanism of their actions is not fully understood. Therefore, this review set out to address the issue of berries intake and their potential functionality. In addition, a glimpse of what the future may hold for the berries was highlighted.
    Matched MeSH terms: Anthocyanins/pharmacology
  9. See KS, Bhatt A, Keng CL
    Rev. Biol. Trop., 2011 Jun;59(2):597-606.
    PMID: 21717852
    Melastoma malabathricum, belongs to the Melastomaceae family, is an important medicinal plant widely distributed from Madagascar to Australia, that is used in traditional remedies for the treatment of various ailments. Besides its medicinal properties, it has been identified as a potential source of anthocyanin production. The present study was carried out to investigate the effect of sucrose and methyl jasmonate and feeding time on cell biomass yield and anthocyanin production in cell suspension culture of M. malabathricum. Addition of different concentrations of sucrose into the cell culture of M. malabathricum influenced cell biomass and pigment accumulation. The addition of methyl jasmonate was found to have no effect on cell biomass but the presence of higher amount (12.5-50 mg/L) had caused a reduction in anthocyanin production and accumulation. MS medium supplemented with 30 g/L sucrose and 3.5 mg/L of MeJA added on cero day and 3rd day produced high fresh cell mass at the end of nine days of culture but did not support the production of anthocyanins. However, cells cultured in the medium supplemented with 45 g/L sucrose without MeJA showed the highest pigment content (0.69 +/- 0.22 CV/g-FCM). The cells cultured in MS medium supplemented with 30 g/L sucrose with 3.5 mg/L MeJA added on the 3rd and 6th day of culture, showed the lowest pigment content (0.37-0.40 CV/g-FCM). This study indicated that MeJA was not necessary but sucrose was needed for the enhancement of cell growth and anthocyanin production in M. malabathricum cell cultures.
    Matched MeSH terms: Anthocyanins/biosynthesis*
  10. Saavedra GM, Figueroa NE, Poblete LA, Cherian S, Figueroa CR
    Food Chem, 2016 Jan 1;190:448-53.
    PMID: 26212995 DOI: 10.1016/j.foodchem.2015.05.107
    Fragaria chiloensis fruit has a short postharvest life mainly due to its rapid softening. In order to improve its postharvest life, preharvest applications of methyl jasmonate (MeJA) and chitosan were evaluated during postharvest storage at room temperature. The quality and chemical parameters, and protection against decay were evaluated at 0, 24, 48 and 72 h of storage from fruits of two subsequent picks (termed as first harvest and second harvest). In general, fruits treated with MeJA and chitosan maintained higher levels of fruit firmness, anthocyanin, and showed significant delays in decay incidence compared to control fruit. MeJA-treated fruits exhibited a greater lignin content and SSC/TA ratio, and delayed decay incidences. Instead, chitosan-treated fruits presented higher antioxidant capacity and total phenol content. In short, both the elicitors were able to increase the shelf life of fruits as evidenced by the increased levels of lignin and anthocyanin, especially of the second harvest.
    Matched MeSH terms: Anthocyanins/analysis
  11. Ahmad NA, Yook Heng L, Salam F, Mat Zaid MH, Abu Hanifah S
    Sensors (Basel), 2019 Nov 05;19(21).
    PMID: 31694284 DOI: 10.3390/s19214813
    A developed colorimetric pH sensor film based on edible materials for real-time monitoring of food freshness is described. The mixed natural dyes from edible plants Clitoria sp and Brassica sp were extracted and incorporated into ι-carrageenan film as a colorimetric pH sensor film for monitoring food spoilage and its freshness. The color changes of the developed colorimetric sensor film were measured with chromametry and UV-vis spectroscopy, respectively. Experimental results show that colorimetric pH sensor film demonstrated statistically significant differences (p < 0.05) between CIE-L*a*b* coordinates color system indicated that the developed colorimetric sensor film was able to give a gradual change in color over a wide pH range. The color of the colorimetric sensor film also changes discretely and linearly with factors that contribute to food spoilage using shrimp and durian samples. Moreover, the developed colorimetric pH sensor film has the potential to be used as a safe, non-destructive testing and also a flexibly visual method for direct assessment of food freshness indicator during storage.
    Matched MeSH terms: Anthocyanins/analysis
  12. Rashid N, Khan S, Wahid A, Ibrar D, Irshad S, Bakhsh A, et al.
    PLoS One, 2021;16(11):e0259214.
    PMID: 34748570 DOI: 10.1371/journal.pone.0259214
    Quinoa (Chenopodium quinoa Willd.) has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritive value. It is cultivated under a range of soil and climatic conditions; however, late sowing adversely affects its productivity and yield due to shorter growth period. Inorganic and organic phyto-stimulants are promising for improving growth, development, and yield of field crops under stressful environments. Field experiments were conducted during crop cultivation seasons of 2016-17 and 2017-18, to explore the role of inorganic (hydrogen peroxide and ascorbic acid) and organic [moringa leaf extract (MLE) and sorghum water extract (sorgaab)] phyto-stimulants in improving growth and productivity of quinoa (cultivar UAF-Q7). Hydrogen peroxide at 100 μM, ascorbic acid at 500 μM, MLE at 3% and sorgaab at 3% were exogenously applied at anthesis stage of quinoa cultivated under normal (November 21st and 19th during 2016 and 2017) and late-sown (December 26th and 25th during 2016 and 2017) conditions. Application of inorganic and organic phyto-stimulants significantly improved biochemical, physiological, growth and yield attributes of quinoa under late sown conditions. The highest improvement in these traits was recorded for MLE. Application of MLE resulted in higher chlorophyll a and b contents, stomatal conductance, and sub-stomatal concentration of CO2 under normal and late-sowing. The highest improvement in soluble phenolics, anthocyanins, free amino acids and proline, and mineral elements in roots, shoot and grains were observed for MLE application. Growth attributes, including plant height, plant fresh weight and panicle length were significantly improved with MLE application as compared to the rest of the treatments. The highest 1000-grain weight and grain yield per plant were noted for MLE application under normal and late-sowing. These findings depict that MLE has extensive crop growth promoting potential through improving physiological and biochemical activities. Hence, MLE can be applied to improve growth and productivity of quinoa under normal and late-sown conditions.
    Matched MeSH terms: Anthocyanins/pharmacology*
  13. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2012;13(1):393-408.
    PMID: 22312260 DOI: 10.3390/ijms13010393
    A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.
    Matched MeSH terms: Anthocyanins/analysis; Anthocyanins/chemistry*
  14. Samad MA, Hashim SH, Simarani K, Yaacob JS
    Molecules, 2016 Mar 26;21(4):419.
    PMID: 27023514 DOI: 10.3390/molecules21040419
    Phoenix dactylifera or date palm fruits are reported to contain natural compounds that exhibit antioxidant and antibacterial properties. This research aimed to study the effect of fruit chilling at 4 °C for 8 weeks, extract storage at -20 °C for 5 weeks, and extraction solvents (methanol or acetone) on total phenolic content (TPC), antioxidant activity and antibacterial properties of Saudi Arabian P. dactylifera cv Mabroom, Safawi and Ajwa, as well as Iranian P. dactylifera cv Mariami. The storage stability of total anthocyanin content (TAC) was also evaluated, before and after storing the extracts at -20 °C and 4 °C respectively, for 5 weeks. Mariami had the highest TAC (3.18 ± 1.40 mg cyd 3-glu/100 g DW) while Mabroom had the lowest TAC (0.54 ± 0.15 mg cyd 3-glu/100 g DW). The TAC of all extracts increased after storage. The chilling of date palm fruits for 8 weeks prior to solvent extraction elevated the TPC of all date fruit extracts, except for methanolic extracts of Mabroom and Mariami. All IC50 values of all cultivars decreased after the fruit chilling treatment. Methanol was a better solvent compared to acetone for the extraction of phenolic compounds in dates. The TPC of all cultivars extracts decreased after 5 weeks of extract storage. IC50 values of all cultivars extracts increased after extract storage except for the methanolic extracts of Safawi and Ajwa. Different cultivars exhibited different antibacterial properties. Only the methanolic extract of Ajwa exhibited antibacterial activity against all four bacteria tested: Staphylococcus aureus, Bacillus cereus, Serratia marcescens and Escherichia coli. These results could be useful to the nutraceutical and pharmaceutical industries in the development of natural compound-based products.
    Matched MeSH terms: Anthocyanins/isolation & purification; Anthocyanins/chemistry
  15. Shaipulah NF, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, et al.
    Plant Physiol, 2016 Feb;170(2):717-31.
    PMID: 26620524 DOI: 10.1104/pp.15.01646
    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
    Matched MeSH terms: Anthocyanins/metabolism*; Anthocyanins/chemistry
  16. Mohd Nawi N, Muhamad II, Mohd Marsin A
    Food Sci Nutr, 2015 Mar;3(2):91-9.
    PMID: 25838887 DOI: 10.1002/fsn3.132
    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder.
    Matched MeSH terms: Anthocyanins
  17. Azman EM, Charalampopoulos D, Chatzifragkou A
    J Food Sci, 2020 Nov;85(11):3745-3755.
    PMID: 32990367 DOI: 10.1111/1750-3841.15466
    The aim of this study was to investigate the effects of different solvent and extraction temperatures on the free and bound phenolic compounds and antioxidant activity of dried blackcurrant skins (DBS). Apart from acetic acid buffer solution, different solvent systems, including water, methanol, and mixtures of methanol/water, were also employed and the effects of solvent and temperature (30 and 50 °C) on the free and bound forms of anthocyanins, hydroxycinnamic acids, and flavonols yield were assessed. The results showed that among all solvents, acetic acid buffer resulted in the highest free anthocyanin content (1,712.3 ± 56.1 mg/100 g) (P
    Matched MeSH terms: Anthocyanins
  18. Mohd Yusof FF, Yaacob JS, Osman N, Ibrahim MH, Wan-Mohtar WAAQI, Berahim Z, et al.
    Plants (Basel), 2021 Mar 23;10(3).
    PMID: 33806923 DOI: 10.3390/plants10030608
    The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m-2 s-1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks' exposure.
    Matched MeSH terms: Anthocyanins
  19. Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI
    Foods, 2021 Mar 23;10(3).
    PMID: 33807100 DOI: 10.3390/foods10030689
    Morus alba L. (M. alba) is a highly adaptable plant that is extensively incorporated in many traditional and Ayurveda medications. Various parts of the plant, such as leaves, fruits, and seeds, possess nutritional and medicinal value. M. alba has abundant phytochemicals, including phenolic acids, flavonoids, flavonols, anthocyanins, macronutrients, vitamins, minerals, and volatile aromatic compounds, indicating its excellent pharmacological abilities. M. alba also contains high nutraceutical values for protein, carbohydrates, fiber, organic acids, vitamins, and minerals, as well as a low lipid value. However, despite its excellent biological properties and nutritional value, M. alba has not been fully considered as a potential functional food ingredient. Therefore, this review reports on the nutrients and bioactive compounds available in M. alba leaves, fruit, and seeds; its nutraceutical properties, functional properties as an ingredient in foodstuffs, and a microencapsulation technique to enhance polyphenol stability. Finally, as scaling up to a bigger production plant is needed to accommodate industrial demand, the study and limitation on an M. alba upscaling process is reviewed.
    Matched MeSH terms: Anthocyanins
  20. Safitri E, Humaira H, Murniana M, Nazaruddin N, Iqhrammullah M, Md Sani ND, et al.
    Polymers (Basel), 2021 Apr 14;13(8).
    PMID: 33919956 DOI: 10.3390/polym13081276
    A simple optical pH sensor based on immobilization, Dioscorea alata L. anthocyanin methanol extract, onto a pectin-chitosan polyelectrolyte complex (pectin-chitosan PEC), has been successfully fabricated. The optical pH sensor was manufactured as a membrane made of pectin-chitosan PEC and the extracted anthocyanin. This sensor has the highest sensitivity of anthocyanin content at 0.025 mg/L in phosphate buffer and 0.0375 mg/L in citrate buffer. It also has good reproducibility with a relative standard deviation (%RSD) of 7.7%, and gives a stable response at time values greater than 5 min from exposure in a buffer solution, and the sensor can be utilized within five days from its synthesis. This optical pH sensor has been employed to determine saliva pH of people of different ages and showed no significant difference when compared to a potentiometric method.
    Matched MeSH terms: Anthocyanins
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links