MATERIALS AND METHODS: We evaluated simple statistics and published model-based approaches. Multiplex-qPCR was conducted to determine the expression of 24 candidate RG in AMLs (N=9). Singleplex-qPCR was carried out on selected RG (SRP14, B2M and ATP5B) and genes of interest in AML (N=15) and healthy controls, HC (N=12).
RESULTS: RG expression levels in AML samples were highly variable and coefficient of variance (CV) ranged from 0.37% to 10.17%. Analysis using GeNorm and Normfinder listed different orders of most stable genes but the top seven (ACTB, UBE2D2, B2M, NF45, RPL37A, GK, QARS) were the same. In singleplex-qPCR, SRP14 maintained the lowest CV in AML samples. B2M, one of most stable reference genes in AML, was expressed near significantly different in AML and HC. GeNorm selected ATP5B+SRP14 while Normfinder chose SRP14+B2M as the best two RG in combination. The median expressions of combined RG genes in AML compared to HC were less significantly different than individually implying smaller expression variation after combination. Genes of interest normalised with RG in combination or individually, displayed significantly different expression patterns.
CONCLUSIONS: The selection of best reference gene in qPCR must consider all sample sets. Model-based approaches are important in large candidate gene analysis. This study showed combination of RG SRP14+B2M was the most suitable normalisation factor for qPCR analysis of AML and healthy individuals.
RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.
CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.
METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients.
RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed.
CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.