Displaying publications 21 - 40 of 91 in total

Abstract:
Sort:
  1. Md Saad AP, Prakoso AT, Sulong MA, Basri H, Wahjuningrum DA, Syahrom A
    Biomech Model Mechanobiol, 2019 Jun;18(3):797-811.
    PMID: 30607641 DOI: 10.1007/s10237-018-01115-z
    This study employs a computational approach to analyse the impact of morphological changes on the structural properties of biodegradable porous Mg subjected to a dynamic immersion test for its application as a bone scaffold. Porous Mg was immersed in a dynamic immersion test for 24, 48, and 72 h. Twelve specimens were prepared and scanned using micro-CT and then reconstructed into a 3D model for finite element analysis. The structural properties from the numerical simulation were then compared to the experimental values. Correlations between morphological parameters, structural properties, and fracture type were then made. The relative losses were observed to be in agreement with relative mass loss done experimentally. The degradation rates determined using exact (degraded) surface area at particular immersion times were on average 20% higher than the degradation rates obtained using original surface area. The dynamic degradation has significantly impacted the morphological changes of porous Mg in volume fraction, surface area, and trabecular separation, which in turn affects its structural properties and increases the immersion time.
    Matched MeSH terms: Mechanical Phenomena*
  2. Hasan M, Gopakumar DA, Olaiya NG, Zarlaida F, Alfian A, Aprinasari C, et al.
    Int J Biol Macromol, 2020 Aug 01;156:896-905.
    PMID: 32289410 DOI: 10.1016/j.ijbiomac.2020.04.039
    Biodegradable films composed of starch and chitosan plasticized by palm oil were fabricated via a solvent casting technique. In this study, the influence of the ratio of brown rice starch and chitosan on the mechanical, thermal, antimicrobial, and morphological properties of the films was investigated. Antimicrobial films with a smooth surface and a compact structure of brown rice starch were obtained. The results showed that a higher proportion of chitosan in the polymer blends resulted in a substantial enhancement in the tensile strength (TS) and thermal stability of the film. The TS values for BRS100, BRS30CH70, BRS50CH50, BRS70CH30, and CH100 were 3.7, 15.2, 10.2, 9.3, and 8.8 MPa, respectively, and the elongation at break (EB) values of the BRS100, BRS30CH70, BRS50CH50, BRS70CH30, and CH100 samples were 39.5%, 34.7%, 7.3%, 11.5%, and 6.9%, respectively. The addition of chitosan to the brown rice starch samples resulted in a reduced water uptake of the film. The film with a balanced ratio of brown rice starch and chitosan exhibited excellent water resistance, with its water absorption being the lowest among all of the studied compositions.
    Matched MeSH terms: Mechanical Phenomena*
  3. Shahemi N, Liza S, Abbas AA, Merican AM
    J Mech Behav Biomed Mater, 2018 11;87:1-9.
    PMID: 30031358 DOI: 10.1016/j.jmbbm.2018.07.017
    A revision of a metal-on-ultra high molecular weight (UHMWPE) bearing couple for total hip replacement was performed due to aseptic loosening after 23 years in-vivo. It is a major long-term failure identified from wear generation. This study includes performing failure analysis of retrieved polyethylene acetabular cup from Zimmer Trilogy® Acetabular system. The UHMWPE acetabular cup was retrieved from a 61 years old male patient with ability to walk but limited leg movement when he presented to hospital in early 2016 with complaint left thigh pain. It was 23 years after his primary total hip replacement procedure. Surface roughness and morphology condition were measured using 3D laser microscope and Scanning Electron Microscope (SEM) to evaluate and characterize the wear features on polyethylene acetabular cup surface. ATR-Fourier Transform Infra-Red (ATR-FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterize the chemical composition of carbon-oxygen bonding, crystallinity percentage and molecular weight of the polymer liner that might changes the mechanical properties of polyethylene. Nano indentation is to measure hardness and elasticity modulus where the ratio of hardness to elastic modulus value can be reflected as the degradation of mechanical properties. A prominent difference of thickness between two regions resulted from acentric loading concentration was observed and wear rate were measured. The linear wear rate for thin side and thick side were 0.33 mm/year and 0.05 mm/year respectively. Molecular weight reduction of 57.5% and relatively low ratio of hardness to elastic modulus (3.59 × 10-3) were the indicator of major mechanical properties degradation happened on UHMWPE acetabular cup. This major degradation was contributed by oxidation and polishing wear feature accompanied with delamination, craters, ripple and cracks were the indication of extensive usage of UHMWPE from the suggested life span of acetabular cup application.
    Matched MeSH terms: Mechanical Phenomena*
  4. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
    Matched MeSH terms: Mechanical Phenomena*
  5. Zainal MA, Ahmad A, Mohamed Ali MS
    Biomed Microdevices, 2017 Mar;19(1):8.
    PMID: 28124762 DOI: 10.1007/s10544-017-0148-5
    This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.
    Matched MeSH terms: Mechanical Phenomena*
  6. Norhaniza R, Mazlan SA, Ubaidillah U, Sedlacik M, Aziz SAA, Nazmi N, et al.
    Sensors (Basel), 2021 Feb 28;21(5).
    PMID: 33670872 DOI: 10.3390/s21051660
    Magnetoactive (MA) foam, with its tunable mechanical properties and magnetostriction, has the potential to be used for the development of soft sensor technology. However, researchers have found that its mechanical properties and magnetostriction are morphologically dependent, thereby limiting its capabilities for dexterous manipulation. Thus, in this work, MA foam was developed with additional capabilities for controlling its magnetostriction, normal force, storage modulus, shear stress and torque by manipulating the concentration of carbonyl iron particles (CIPs) and the magnetic field with regard to morphological changes. MA foams were prepared with three weight percentages of CIPs, namely, 35 wt.%, 55 wt.% and 75 wt.%, and three different modes, namely, zero shear, constant shear and various shears. The results showed that the MA foam with 75 wt.% of CIPs enhanced the normal force sensitivity and positive magnetostriction sensitivity by up to 97% and 85%, respectively. Moreover, the sensitivities of the storage modulus, torque and shear stress were 8.97 Pa/mT, 0.021 µN/mT, and 0.0096 Pa/mT, respectively. Meanwhile, the magnetic dipolar interaction between the CIPs was capable of changing the property of MA foam from a positive to a negative magnetostriction under various shear strains with a low loss of energy. Therefore, it is believed that this kind of highly sensitive MA foam can potentially be implemented in future soft sensor systems.
    Matched MeSH terms: Mechanical Phenomena
  7. Parasuraman S, Elamvazuthi I, Kanagaraj G, Natarajan E, Pugazhenthi A
    Materials (Basel), 2021 Mar 31;14(7).
    PMID: 33807476 DOI: 10.3390/ma14071726
    Reinforced aluminum composites are the basic class of materials for aviation and transport industries. The machinability of these composites is still an issue due to the presence of hard fillers. The current research is aimed to investigate the drilling topographies of AA7075/TiB2 composites. The samples were prepared with 0, 3, 6, 9 and 12 wt.% of fillers and experiments were conducted by varying the cutting speed, feed, depth of cut and tool nose radius. The machining forces and surface topographies, the structure of the cutting tool and chip patterns were examined. The maximum cutting force was recorded upon increase in cutting speed because of thermal softening, loss of strength discontinuity and reduction of the built-up-edge. The increased plastic deformation with higher cutting speed resulted in the excess metal chip. In addition, the increase in cutting speed improved the surface roughness due to decrease in material movement. The cutting force was decreased upon high loading of TiB2 due to the deterioration of chips caused by fillers. Further introduction of TiB2 particles above 12 wt.% weakened the composite; however, due to the impact of the microcutting action of the fillers, the surface roughness was improved.
    Matched MeSH terms: Mechanical Phenomena
  8. ALIATULNAJIHA AYUB, MOHD ASAMUDIN A RAHMAN
    MyJurnal
    A numerical study is conducted to determine the Vortex Induced Motion (VIM) effects on Deep-Draft Semi-Submersibles (DDSS). The VIM phenomena is a crucial problem that can cause severe impact on the fatigue life of mooring risers in DDSS. Therefore, a comprehensive numerical simulation is conducted using the Acusolve computational fluid dynamics (CFD) software. Five models of immersed columns with different aspect ratios (ie. 0.6, 0.8, 1.0, 1.2 and 1.4) are numerically investigated under two different incidence angles, which are 0° and 45°. The transverse and in-line vibration amplitude, amplitude of lift force coefficient and vortex shedding are analyzed. The numerical measurements are obtained to see the response of horizontal plane motions, which are transverse, in line and yaw motions. This study with detailed numerical results from parametric data will contribute future studies and the comparisons are made to demonstrate the capability of the present CFD approach.
    Matched MeSH terms: Mechanical Phenomena
  9. Utami D, Ubaidillah, Mazlan SA, Imaduddin F, Nordin NA, Bahiuddin I, et al.
    Materials (Basel), 2018 Nov 06;11(11).
    PMID: 30404193 DOI: 10.3390/ma11112195
    This paper investigates the field-dependent rheological properties of magnetorheological (MR) fluid used to fill in MR dampers after long-term cyclic operation. For testing purposes, a meandering MR valve was customized to create a double-ended MR damper in which MR fluid flowed inside the valve due to the magnetic flux density. The test was conducted for 170,000 cycles using a fatigue dynamic testing machine which has 20 mm of stroke length and 0.4 Hz of frequency. Firstly, the damping force was investigated as the number of operating cycles increased. Secondly, the change in viscosity of the MR fluid was identified as in-use thickening (IUT). Finally, the morphological observation of MR particles was undertaken before and after the long-term operation. From these tests, it was demonstrated that the damping force increased as the number of operating cycles increases, both when the damper is turn on (on-state) and off (off-state). It is also observed that the particle size and shape changed due to the long operation, showing irregular particles.
    Matched MeSH terms: Mechanical Phenomena
  10. Nor FM, Lim JY, Tamin MN, Lee HY, Kurniawan D
    Polymers (Basel), 2020 Apr 14;12(4).
    PMID: 32295111 DOI: 10.3390/polym12040904
    The mechanics of damage and fracture process in unidirectional carbon fiber reinforced polymer (CFRP) composites subjected to shear loading (Mode II) were examined using the experimental method of the three-point end-notch flexure (3ENF) test. The CFRP composite consists of [0o]16 with an insert film in the middle plane for a starter defect. A 3ENF test sample with a span of 50 mm and interface delamination crack length of 12.5 mm was tested to yield the load vs. deformation response. A sudden load drop observed at maximum force value indicates the onset of delamination crack propagation. The results are used to extract the energy release rate, GIIC, of the laminates with an insert film starter defect. The effect of the starter defect on the magnitude of GIIC was examined using the CFRP composite sample with a Mode II delamination pre-crack. The higher magnitude of GIIC for the sample with insert film starter defect was attributed to the initial straight geometry of the notch/interface crack and the toughness of the resin at the notch front of the fabricated film insert. The fractured sample was examined using a micro-computerized tomography scanner to establish the shape of the internal delamination crack front. Results revealed that the interface delamination propagated in a non-uniform manner, leaving a curved-shaped crack profile.
    Matched MeSH terms: Mechanical Phenomena
  11. Ng KC, Sheu TWH
    Phys Rev E, 2017 Oct;96(4-1):043302.
    PMID: 29347538 DOI: 10.1103/PhysRevE.96.043302
    It has been observed previously that the physical behaviors of Schmidt number (Sc) and Prandtl number (Pr) of an energy-conserving dissipative particle dynamics (eDPD) fluid can be reproduced by the temperature-dependent weight function appearing in the dissipative force term. In this paper, we proposed a simple and systematic method to develop the temperature-dependent weight function in order to better reproduce the physical fluid properties. The method was then used to study a variety of phase-change problems involving solidification. The concept of the "mushy" eDPD particle was introduced in order to better capture the temperature profile in the vicinity of the solid-liquid interface, particularly for the case involving high thermal conductivity ratio. Meanwhile, a way to implement the constant temperature boundary condition at the wall was presented. The numerical solutions of one- and two-dimensional solidification problems were then compared with the analytical solutions and/or experimental results and the agreements were promising.
    Matched MeSH terms: Mechanical Phenomena
  12. Fairus FZ, Joseph LH, Omar B, Ahmad J, Sulaiman R
    Malays J Med Sci, 2016 Mar;23(2):21-7.
    PMID: 27547111 MyJurnal
    The understanding of vertical ground reaction force (VGRF) during walking and half-squatting is necessary and commonly utilised during the rehabilitation period. The purpose of this study was to establish measurement reproducibility of VGRF that reports the minimal detectable changes (MDC) during walking and half-squatting activity among healthy male adults.
    Matched MeSH terms: Biomechanical Phenomena; Mechanical Phenomena
  13. Yu L, Mei Q, Xiang L, Liu W, Mohamad NI, István B, et al.
    Front Bioeng Biotechnol, 2021;9:629809.
    PMID: 33842444 DOI: 10.3389/fbioe.2021.629809
    Ground reaction force (GRF) is a key metric in biomechanical research, including parameters of loading rate (LR), first impact peak, second impact peak, and transient between first and second impact peaks in heel strike runners. The GRFs vary over time during stance. This study was aimed to investigate the variances of GRFs in rearfoot striking runners across incremental speeds. Thirty female and male runners joined the running tests on the instrumented treadmill with speeds of 2.7, 3.0, 3.3, and 3.7 m/s. The discrete parameters of vertical average loading rate in the current study are consistent with the literature findings. The principal component analysis was modeled to investigate the main variances (95%) in the GRFs over stance. The females varied in the magnitude of braking and propulsive forces (PC1, 84.93%), whereas the male runners varied in the timing of propulsion (PC1, 53.38%). The female runners dominantly varied in the transient between the first and second peaks of vertical GRF (PC1, 36.52%) and LR (PC2, 33.76%), whereas the males variated in the LR and second peak of vertical GRF (PC1, 78.69%). Knowledge reported in the current study suggested the difference of the magnitude and patterns of GRF between male and female runners across different speeds. These findings may have implications for the prevention of sex-specific running-related injuries and could be integrated with wearable signals for the in-field prediction and estimation of impact loadings and GRFs.
    Matched MeSH terms: Biomechanical Phenomena; Mechanical Phenomena
  14. Lin PC, Fang JC, Lin JW, Tran XV, Ching YC
    Materials (Basel), 2020 Sep 19;13(18).
    PMID: 32961763 DOI: 10.3390/ma13184170
    Effects of processing parameters on preheated (heat-assisted) clinching process to join aluminum alloy 5052-H32 (AA5052) and thermoplastic carbon-fiber-reinforced-plastic (TP-CFRP) sheets for cross-tension (CT) specimens were first studied. Preheating was critical since brittle TP-CFRP could be softened to avoid fracturing or cracking during clinching process. Four processing parameters, including punching force, die depth, heating mode, and heating temperature, were considered. Quasi-static tests and microscope observations were taken to evaluate AA5052/TP-CFRP clinch joints in CT specimens and determine appropriate processing parameters for fatigue tests. Finally, fatigue data and failure mode of clinch joints in CT specimens were obtained and discussed.
    Matched MeSH terms: Mechanical Phenomena
  15. Pazarci O, Torun Y, Ozturk A, Oztemur Z
    Malays Orthop J, 2020 Jul;14(2):83-89.
    PMID: 32983381 DOI: 10.5704/MOJ.2007.016
    Introduction: The performance of the drilling process depends on the characteristics of the drilling equipment and surgeon's skill. To our knowledge, no research has focused on multi-parameter analysis of the dynamic behaviour of drills during the drilling process. This study aimed to characterise the physical changes and effects of different drills attached to a robotic arm during drilling of artificial bones in a standardised experimental setup.

    Material and Methods: Drilling processes using three brands of drills attached to a robotic arm were compared in terms of thrust force, vibration, noise level, speed deviation, and temperature. A standardised experimental setup was constructed, and measurement data were analysed statistically. Identical artificial bones were drilled 10 times with each drill.

    Results: Thrust force measurements, which varied through the cortex and medulla, showed expressive differences for each drill for maximum and mean values (p<0.001). Meaningful differences were obtained for mean vibration values and noise level (p<0.001). Speed variation measurements in drilling showed conspicuous differences with confident statistics (p<0.001). Induced temperature values were measured statistically for Drill 1, Drill 2, and Drill 3 as 78.38±11.49°C, 78.11±7.79°C, and 89.77±7.79°C, respectively.

    Conclusion: Thrust force and drill bit temperature were strongly correlated for each drill. Vibration values and noise level, which also had an influential relationship, were in the acceptable range for all experiments. Both thrust force and speed deviation information could be used to detect the drill bit status in the bone while drilling.

    Matched MeSH terms: Mechanical Phenomena
  16. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
    Matched MeSH terms: Mechanical Phenomena
  17. Abdullah SJ, Shaikh Mohammed J
    Assist Technol, 2018;30(4):165-175.
    PMID: 28346064 DOI: 10.1080/10400435.2017.1293193
    Independent mobility is vital to individuals of all ages, and wheelchairs have proven to be great personal mobility devices. The tasks of opening and navigating through a door are trivial for healthy people, while the same tasks could be difficult for some wheelchair users. A wide range of intelligent wheelchair controllers and systems, robotic arms, or manipulator attachments integrated with wheelchairs have been developed for various applications, including manipulating door knobs. Unfortunately, the intelligent wheelchairs and robotic attachments are not widely available as commercial products. Therefore, the current manuscript presents the modeling and simulation of a novel but simple technology in the form of a passive wheelchair accessory (straight, arm-like with a single wheel, and arc-shaped with multiple wheels) for pushing doors open from a wheelchair. From the simulations using different wheel shapes and sizes, it was found that the arc-shaped accessory could push open the doors faster and with almost half the required force as compared to the arm-like accessory. Also, smaller spherical wheels were found to be best in terms of reaction forces on the wheels. Prototypes based on the arc-shaped accessory design will be manufactured and evaluated for pushing doors open and dodging or gliding other obstacles.
    Matched MeSH terms: Mechanical Phenomena
  18. Hazwan Hussin M, Aziz AA, Iqbal A, Ibrahim MNM, Latif NHA
    Int J Biol Macromol, 2019 Feb 01;122:713-722.
    PMID: 30399384 DOI: 10.1016/j.ijbiomac.2018.11.009
    The recent study focused on lignin-phenol-glyoxal (LPG) as an alternative way to replace toxic formaldehyde used in commercially available wood adhesives. The concern of the uses of carcinogenic formaldehyde in wood adhesive industry has become major problem over human health, environmental and economy issues. In this study, lignin isolated from Kenaf (Hibiscus cannabinus) via soda and Kraft pulping were modified into SLPG (soda lignin-phenol-glyoxal) and KLPG (Kraft lignin-phenol-glyoxal) adhesives and were compared to phenol-formaldehyde (PF). Complementary analyses such as Fourier Transform Infrared (FTIR) spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy, thermal stability; Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) were utilized to characterize all isolated lignin samples. The physical properties of the resins were further characterized in term of viscosity, gel time and total solid content. It was found that soda lignin comprised higher phenolic OH content and greater molecular weight compared to Kraft lignin. Various molar ratio of adhesives were applied on plywood and were mechanically tested. The 30% (w/w) SLPG has shown to have higher tensile strength and internal bonding stress at 72.08 MPa and 53.83 N mm-2 respectively to that of PF.
    Matched MeSH terms: Mechanical Phenomena
  19. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A
    Sci Rep, 2019 Oct 25;9(1):15317.
    PMID: 31653877 DOI: 10.1038/s41598-019-51450-z
    A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.
    Matched MeSH terms: Mechanical Phenomena
  20. Sri Harjanto, Latifa N. Noviana, Mia Diniati, Stefanno W. Yunior, Nasruddin
    Sains Malaysiana, 2015;44:747-752.
    Coal-based activated carbon materials is a prospective materials for hydrogen storage application. The present work
    aimed to study the effect of post treatments including mechanical milling process and pelletization and simulating
    experimentally the conditions of pelletization of fine particles of activated coal. Post treatment of activated coal consist
    of 2 steps mechanical milling process in planetary ball mill followed by pelletization. First step of mechanical milling
    process gave particle size reduction and second step was undertaken to maintain activity of activated coal. Second step
    of mechanochemical process were done in dry (ACP-A) and wet condition (ACP-B) with the ratio of sample: KOH was
    1:1 and performed for 1 h. Then they will be formed into pellets with the addition of binder which contained fructose,
    glucose and oligo. Some examinations such as PSA, BET, SEM and XRD were performed to determine the characteristics of
    activated carbon materials including hydrogen adsorption capacity testing. Particle size reduction of activated carbon
    reached 98.9% after planetary ball milling. The raw material of activated carbon (AC) has hydrogen adsorption as much
    as from 0.30 and 0.25 wt. % from -5 and 25o
    C measurements, respectively. As predicted the adsorption of hydrogen gas
    of pelletized activated carbon from bituminous coal decreased due to post treatment process about 47% for ACP-A and
    60% for ACP-B at 4000 Bar.
    Matched MeSH terms: Mechanical Phenomena
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links