Displaying publications 21 - 40 of 202 in total

Abstract:
Sort:
  1. Vankova OE, Brusnigina NF, Novikova NA
    Sovrem Tekhnologii Med, 2023;15(2):41-46.
    PMID: 37389021 DOI: 10.17691/stm2023.15.2.04
    Modern molecular genetic methods, massive parallel sequencing in particular, allow for genotyping of various pathogens with the aim of their epidemiological marking and improvement of molecular epidemiological surveillance of actual infections, including cytomegalovirus infection. The aim of the study is to evaluate the next-generation sequencing (NGS) technology for genotyping clinical isolates of cytomegalovirus (CMV).

    MATERIALS AND METHODS: The object of the study were samples of biological substrates (leukocyte mass, saliva, urine) taken from patients who underwent liver and kidney transplantation. Detection of CMV DNA was carried out by a real-time PCR using commercial diagnostic AmpliSense CMV-FL test systems (Central Research Institute for Epidemiology, Moscow, Russia). DNA extraction was performed using DNA-sorb AM and DNA-sorb V kits (Central Research Institute for Epidemiology) in accordance with manufacturer's manual. The quality of the prepared DNA library for sequencing was assessed by means of the QIAxcel Advanced System capillary gel electrophoresis system (QIAGEN, Germany). Alignment and assembly of nucleotide sequences were carried out using CLC Genomics Workbench 5.5 software (CLC bio, USA). The sequencing results were analyzed using BLAST of NCBI server.

    RESULTS: CMV DNA samples were selected for genotyping. The two variable genes, UL55(gB) and UL73(gN), were used for CMV genotype determination, which was performed using NGS technology MiSeq sequencer (Illumina, USA). Based on the exploratory studies and analysis of literature sources, primers for genotyping on the UL55(gB) and UL73(gN) genes have been selected and the optimal conditions for the PCR reaction have been defined. The results of sequencing the UL55(gB) and UL73(gN) gene fragments of CMV clinical isolates from recipients of solid organs made it possible to determine the virus genotypes, among which gB2, gN4c, and gN4b were dominant. In some cases, association of two and three CMV genotypes has been revealed.

    CONCLUSION: The application of the NGS technology for genotyping cytomegalovirus strains can become one of the main methods of CMV infection molecular epidemiology, as it allows for obtaining reliable results with a significant reduction in research time.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  2. Ang MY, Low TY, Lee PY, Wan Mohamad Nazarie WF, Guryev V, Jamal R
    Clin Chim Acta, 2019 Nov;498:38-46.
    PMID: 31421119 DOI: 10.1016/j.cca.2019.08.010
    One of the best-established area within multi-omics is proteogenomics, whereby the underpinning technologies are next-generation sequencing (NGS) and mass spectrometry (MS). Proteogenomics has contributed significantly to genome (re)-annotation, whereby novel coding sequences (CDS) are identified and confirmed. By incorporating in-silico translated genome variants in protein database, single amino acid variants (SAAV) and splice proteoforms can be identified and quantified at peptide level. The application of proteogenomics in cancer research potentially enables the identification of patient-specific proteoforms, as well as the association of the efficacy or resistance of cancer therapy to different mutations. Here, we discuss how NGS/TGS data are analyzed and incorporated into the proteogenomic framework. These sequence data mainly originate from whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-Seq. We explain two major strategies for sequence analysis i.e., de novo assembly and reads mapping, followed by construction of customized protein databases using such data. Besides, we also elaborate on the procedures of spectrum to peptide sequence matching in proteogenomics, and the relationship between database size on the false discovery rate (FDR). Finally, we discuss the latest development in proteogenomics-assisted precision oncology and also challenges and opportunities in proteogenomics research.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/methods; High-Throughput Nucleotide Sequencing/trends
  3. Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R
    Mol Biotechnol, 2015 Oct;57(10):880-903.
    PMID: 26271955 DOI: 10.1007/s12033-015-9884-z
    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/economics; High-Throughput Nucleotide Sequencing/methods*
  4. Wilson JJ, Brandon-Mong GJ, Gan HM, Sing KW
    PMID: 29591722 DOI: 10.1080/24701394.2018.1455189
    Consensus on the optimal high-throughput sequencing (HTS) approach to examine biodiversity in mixed terrestrial arthropod samples has not been reached. Metatranscriptomics could increase the proportion of taxonomically informative mitochondrial reads in HTS outputs but has not been investigated for terrestrial arthropod samples. We compared the efficiency of 16S rRNA metabarcoding, metagenomics and metatranscriptomics for detecting species in a mixed terrestrial arthropod sample (pooled DNA/RNA from 38 taxa). 16S rRNA metabarcoding and nuclear rRNA-depleted metatranscriptomics had the highest detection rate with 97% of input species detected. Based on cytochrome c oxidase I, metagenomics had the highest detection rate with 82% of input species detected, but metatranscriptomics produced a larger proportion of reads matching (Sanger) reference sequences. Metatranscriptomics with nuclear rRNA depletion may offer advantages over metabarcoding through reducing the number of spurious operational taxonomic units while retaining high detection rates, and offers natural enrichment of mitochondrial sequences which may enable increased species detection rates compared with metagenomics.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/methods; High-Throughput Nucleotide Sequencing/standards
  5. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  6. Thai BT, Tan MH, Lee YP, Gan HM, Tran TT, Austin CM
    Mol Biol Rep, 2016 May;43(5):391-6.
    PMID: 26922181 DOI: 10.1007/s11033-016-3966-2
    The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy-Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7-36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  7. Ab Razak S, Mad Radzuan S, Mohamed N, Nor Azman NHE, Abd Majid AM, Ismail SN, et al.
    Heliyon, 2020 Sep;6(9):e05077.
    PMID: 33024864 DOI: 10.1016/j.heliyon.2020.e05077
    The trend of microsatellite marker discovery and development revolved as a result of the advancement of next generation sequencing (NGS) technology as it has developed numerous microsatellites within a short period of time at a low cost. This study generated microsatellite markers using RAD sequencing technologies for the understudied Nephelium lappaceum. A total of 1403 microsatellite markers were successfully designed, which consisted of 853 di-, 525 tri-, 17 tetra-, 5 penta-, and 3 hexanucleotide microsatellite markers. Subsequently, selection of 39 microsatellites was made for the evaluation of genetic diversity of the selected 22 rambutan varieties. Twelve microsatellites, which exhibited high call rates across the samples, were used to assess the diversity of the aforementioned rambutan varieties. The analysis of 12 microsatellites revealed the presence of 72 alleles and six alleles per locus in average. Furthermore, the polymorphic information content (PIC) value ranged from 0.326 (NlaSSR20) to 0.832 (NlaSSR32), which included an average of 0.629 per locus, while the generated Neighbour Joining dendrogram showed two major clusters. The pairwise genetic distance of shared alleles exhibited a range of values from 0.046 (R134↔R170) to 0.818 (R5↔R170), which suggested highest dissimilarity detected between R5 and R170. Notably, these research findings would useful for varietal identification, proper management and conservation of the genetic resources, and exploitation and utilization in future breeding programs.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  8. Abdullah N, Al-Marzooq F, Mohamad S, Abd Rahman N, Chi Ngo H, Perera Samaranayake L
    J Oral Microbiol, 2019;11(1):1647757.
    PMID: 31489127 DOI: 10.1080/20002297.2019.1647757
    Background: Oral biofilms are the root cause of major oral diseases. As in vitro biofilms are not representative of the intraoral milieu, various devices have been manufactured over the years to develop Appliance Grown Oral Biofilm (AGOB). Objective: To review various intraoral appliances used to develop AGOB for microbiological analysis, and to judge the optimal means for such analyses. Design: Four databases (PubMed, Science Direct, Scopus and Medline) were searched by two independent reviewers, and articles featuring the key words 'device' OR 'splint' OR 'appliance'; 'Oral biofilm' OR 'dental plaque'; 'in vivo' OR 'in situ'; 'Microbiology' OR 'Bacteria' OR 'microbiome'; were included. The standard Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were adopted for data gathering. Results: Of the 517 articles which met the initial inclusion criteria, 24 were deemed eligible for review. The age of the AGOB, sampled at various intervals, ranged from 30 min to 28 days. The most commonly used microbiome analytical methods were fluorescence microscopy, total cell count using conventional, and molecular tools including Next Generation Sequencing (NGS) platforms. Conclusions: No uniformly superior method for collecting AGOB could be discerned. NGS platforms are preferable for AGOB analyses.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  9. Ee Uli J, Yong CS, Yeap SK, Alitheen NB, Rovie-Ryan JJ, Mat Isa N, et al.
    BMC Res Notes, 2018 Dec 22;11(1):923.
    PMID: 30577850 DOI: 10.1186/s13104-018-4014-1
    OBJECTIVE: Using high-throughput RNA sequencing technology, this study aimed to sequence the transcriptome of kidney and liver tissues harvested from Peninsular Malaysia cynomolgus macaque (Macaca fascicularis). M. fascicularis are significant nonhuman primate models in the biomedical field, owing to the macaque's biological similarities with humans. The additional transcriptomic dataset will supplement the previously described Peninsular Malaysia M. fascicularis transcriptomes obtained in a past endeavour.

    RESULTS: A total of 75,350,240 sequence reads were obtained via Hi-seq 2500 sequencing technology. A total of 5473 significant differentially expressed genes were called. Gene ontology functional categorisation showed that cellular process, catalytic activity, and cell part categories had the highest number of expressed genes, while the metabolic pathways category possessed the highest number of expressed genes in the KEGG pathway analysis. The additional sequence dataset will further enrich existing M. fascicularis transcriptome assemblies, and provide a dataset for further downstream studies.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  10. Rao R, Bing Zhu Y, Alinejad T, Tiruvayipati S, Lin Thong K, Wang J, et al.
    Gut Pathog, 2015;7:6.
    PMID: 25922623 DOI: 10.1186/s13099-015-0052-6
    The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species' immune response to this pathogenic bacteria.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  11. Baddam R, Kumar N, Shaik S, Suma T, Ngoi ST, Thong KL, et al.
    Gut Pathog, 2012;4(1):20.
    PMID: 23234298 DOI: 10.1186/1757-4749-4-20
    Salmonella Typhi is a human restricted pathogen with a significant number of individuals as asymptomatic carriers of the bacterium. Salmonella infection can be effectively controlled if a reliable method for identification of these carriers is developed. In this context, the availability of whole genomes of carrier strains through high- throughput sequencing and further downstream analysis by comparative genomics approaches is very promising. Herein we describe the genome sequence of a Salmonella Typhi isolate representing an asymptomatic carrier individual during a prolonged outbreak of typhoid fever in Kelantan, Malaysia. Putative genomic coordinates relevant in pathogenesis and persistence of this carrier strain are identified and discussed.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  12. Ngoot-Chin T, Zulkifli MA, van de Weg E, Zaki NM, Serdari NM, Mustaffa S, et al.
    Planta, 2021 Feb 05;253(2):63.
    PMID: 33544231 DOI: 10.1007/s00425-021-03567-7
    MAIN CONCLUSION: Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts. Oil palm produces a quarter of the world's total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker-trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker-trait association analyses.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  13. Rosli N, Sitam FT, Rovie-Ryan JJ, Gan HM, Lee YP, Hartini Ithnin, et al.
    Mitochondrial DNA B Resour, 2019 Jul 13;4(2):2535-2536.
    PMID: 33365614 DOI: 10.1080/23802359.2019.1640085
    Here, we present the first complete mitochondrial genome of Malayan Gaur (Bos gaurus hubbacki) inferred using next-generation sequencing. The mitogenome is 16,367 bp in length with the structural organization of a typical bovine mitochondrial arrangement comprising 13 protein-coding genes, 21 tRNAs, and 2 rRNAs. No internal stop codon was found in the protein-coding genes. Phylogenetic tree analysis revealed that Malayan gaur is more closely related to Burmese banteng instead of gaur.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  14. Lee SY, Ng WL, Mohamed R, Terhem R
    Mitochondrial DNA B Resour, 2018 Oct 29;3(2):1120-1121.
    PMID: 33474439 DOI: 10.1080/23802359.2018.1519382
    Known for its valuable agarwood, Aquilaria malaccensis Lam. is an evergreen tropical forest tree species endemic to the Indo-malesian region. Indiscriminate damaging and harvesting of the trees in the wild have resulted in it being listed in the CITES Appendix II for controlled trade and in the IUCN Red List as 'Vulnerable (VU)'. In this study, the complete chloroplast genome of A. malaccensis was assembled using data from high-throughput Illumina sequencing. The chloroplast genome was 174,832 bp in size, which included two inverted repeat regions of 42,091 bp each, separated by a large single copy region of 87,302 bp and a small single copy region of 3,348 bp. A total of 139 genes were predicted, including 39 tRNA, 8 rRNA, and 92 protein-coding genes. Phylogenetic analysis placed A. malaccensis within the family Thymelaeaceae. The chloroplast genome sequence of A. malaccensis offers a useful resource for future studies on the taxonomy and conservation of the threatened Aquilaria trees.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  15. Okuyama H, Tingek S, Takahashi JI
    Mitochondrial DNA B Resour, 2017 Jul 31;2(2):475-476.
    PMID: 33473869 DOI: 10.1080/23802359.2017.1361344
    The complete mitochondrial genome of the cavity-nesting honeybee Apis cerana from Sabah on Borneo Island was analyzed using next-generation sequencing. The mitochondrial genome of A. cerana was a circular molecule of 15,884 bp and was similar to that of the other cavity-nesting honeybee species. The average AT content in the A. cerana mitochondrial genome was 84.4%. It was predicted to contain 13 protein-coding, 22 tRNA, and two rRNA genes, along with one A + T-rich control region.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  16. Sablok G, Pérez-Pulido AJ, Do T, Seong TY, Casimiro-Soriguer CS, La Porta N, et al.
    Front Plant Sci, 2016;7:878.
    PMID: 27446111 DOI: 10.3389/fpls.2016.00878
    Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  17. Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Jamal R
    Front Microbiol, 2018;9:767.
    PMID: 29755427 DOI: 10.3389/fmicb.2018.00767
    The human gut holds the densest microbiome ecosystem essential in maintaining a healthy host physiology, whereby disruption of this ecosystem has been linked to the development of colorectal cancer (CRC). The advent of next-generation sequencing technologies such as the 16S rRNA gene sequencing has enabled characterization of the CRC gut microbiome architecture in an affordable and culture-free approach. Nevertheless, the lack of standardization in handling and storage of biospecimens, nucleic acid extraction, 16S rRNA gene primer selection, length, and depth of sequencing and bioinformatics analyses have contributed to discrepancies found in various published studies of this field. Accurate characterization of the CRC microbiome found in different stages of CRC has the potential to be developed into a screening tool in the clinical setting. This mini review aims to concisely compile all available CRC microbiome studies performed till end of 2016 and to suggest standardized protocols that are crucial in developing a gut microbiome screening panel for CRC.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  18. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI, et al.
    J Allergy Clin Immunol, 2019 Jan;143(1):359-368.
    PMID: 30273710 DOI: 10.1016/j.jaci.2018.09.009
    BACKGROUND: Postzygotic de novo mutations lead to the phenomenon of gene mosaicism. The 3 main types are called somatic, gonadal, and gonosomal mosaicism, which differ in terms of the body distribution of postzygotic mutations. Mosaicism has been reported occasionally in patients with primary immunodeficiency diseases (PIDs) since the early 1990s, but its real involvement has not been systematically addressed.

    OBJECTIVE: We sought to investigate the incidence of gene mosaicism in patients with PIDs.

    METHODS: The amplicon-based deep sequencing method was used in the 3 parts of the study that establish (1) the allele frequency of germline variants (n = 100), (2) the incidence of parental gonosomal mosaicism in families with PIDs with de novo mutations (n = 92), and (3) the incidence of mosaicism in families with PIDs with moderate-to-high suspicion of gene mosaicism (n = 36). Additional investigations evaluated body distribution of postzygotic mutations, their stability over time, and their characteristics.

    RESULTS: The range of allele frequency (44.1% to 55.6%) was established for germline variants. Those with minor allele frequencies of less than 44.1% were assumed to be postzygotic. Mosaicism was detected in 30 (23.4%) of 128 families with PIDs, with a variable minor allele frequency (0.8% to 40.5%). Parental gonosomal mosaicism was detected in 6 (6.5%) of 92 families with de novo mutations, and a high incidence of mosaicism (63.9%) was detected among families with moderate-to-high suspicion of gene mosaicism. In most analyzed cases mosaicism was found to be both uniformly distributed and stable over time.

    CONCLUSION: This study represents the largest performed to date to investigate mosaicism in patients with PIDs, revealing that it affects approximately 25% of enrolled families. Our results might have serious consequences regarding treatment and genetic counseling and reinforce the use of next-generation sequencing-based methods in the routine analyses of PIDs.

    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  19. Samad AFA, Sajad M, Jani J, Murad AMA, Ismail I
    Data Brief, 2018 Oct;20:555-557.
    PMID: 30197911 DOI: 10.1016/j.dib.2018.08.034
    Degradome sequencing referred as parallel analysis of RNA ends (PARE) by modifying 5'-rapid amplification of cDNA ends (RACE) with deep sequencing method. Deep sequencing of 5' products allow the determination of cleavage sites through the mapping of degradome fragments against small RNAs (miRNA or siRNA) on a large scale. Here, we carried out degradome sequencing in medicinal plant, Persicaria minor, to identify cleavage sites in small RNA libraries in control (mock-inoculated) and Fusarium oxysporum treated plants. The degradome library consisted of both control and treated samples which were pooled together during library preparation and named as D4. The D4 dataset have been deposited at GenBank under accession number SRX3921398, https://www.ncbi.nlm.nih.gov/sra/SRX3921398.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
  20. Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al.
    Evol Bioinform Online, 2019;15:1176934319892284.
    PMID: 31839703 DOI: 10.1177/1176934319892284
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links