Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF-κB, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF-κB, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF-α, IL-1β, and PGE2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF-κB activation by prompting p65, IκBα, and IKKα/β phosphorylation as well as IκBα degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF-κB, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF-α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses.
Compounds with activity at serotonin (5-hydroxytryptamine) 5-HT2 and α1 adrenergic receptors have potential for the treatment of central nervous system disorders, drug addiction or overdose. Isolaureline, dicentrine and glaucine enantiomers were synthesized, and their in vitro functional activities at human 5-HT2 and adrenergic α1 receptor subtypes were evaluated. The enantiomers of isolaureline and dicentrine acted as antagonists at 5-HT2 and α1 receptors with (R)-isolaureline showing the greatest potency (pKb = 8.14 at the 5-HT2C receptor). Both (R)- and (S)-glaucine also antagonized α1 receptors, but they behaved very differently to the other compounds at 5-HT2 receptors: (S)-glaucine acted as a partial agonist at all three 5-HT2 receptor subtypes, whereas (R)-glaucine appeared to act as a positive allosteric modulator at the 5-HT2A receptor.
Increased oxidative stress is involved in the pathogenesis and progression of diabetes. Antioxidants are therapeutically beneficial for oxidative stress-associated diseases. Boldine ([s]-2,9-dihydroxy-1,10-dimethoxyaporphine) is a major alkaloid present in the leaves and bark of the boldo tree (Peumus boldus Molina), with known an antioxidant activity. This study examined the protective effects of boldine against high glucose-induced oxidative stress in rat aortic endothelial cells (RAEC) and its mechanisms of vasoprotection related to diabetic endothelial dysfunction. In RAEC exposed to high glucose (30 mM) for 48 h, pre-treatment with boldine reduced the elevated ROS and nitrotyrosine formation, and preserved nitric oxide (NO) production. Pre-incubation with β-NAPDH reduced the acetylcholine-induced endothelium-dependent relaxation; this attenuation was reversed by boldine. Compared with control, endothelium-dependent relaxation in the aortas of streptozotocin (STZ)-treated diabetic rats was significantly improved by both acute (1 μM, 30 min) and chronic (20mg/kg/daily, i.p., 7 days) treatment with boldine. Intracellular superoxide and peroxynitrite formation measured by DHE fluorescence or chemiluminescence assay were higher in sections of aortic rings from diabetic rats compared with control. Chronic boldine treatment normalized ROS over-production in the diabetic group and this correlated with reduction of NAD(P)H oxidase subunits, NOX2 and p47(phox). The present study shows that boldine reversed the increased ROS formation in high glucose-treated endothelial cells and restored endothelial function in STZ-induced diabetes by inhibiting oxidative stress and thus increasing NO bioavailability.
Chloroform extract of bark of Artabotrys crassifolius Hook.f. & Thomson exhibited antibacterial activities against both American Type Culture Collection and clinical bacterial strains in vitro with zones of inhibition ranging from 7 to 14 mm. Further analysis of this extract yielded artabotrine, liridine, lysicamine and atherospermidine. Artabotrine displayed a broad array of antibacterial activity mostly against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 1.25 μg/mL to 5 μg/mL. Of note, artabotrine, liridine and lysicamine are bactericidal against Gram-negative extended-spectrum beta-lactamase-producing Klebsiella with MIC values equal 2.5, 2.5 and 10 μg/mL, respectively, and minimum bactericidal concentrations values equal to 2.5, 5 and 20 μg/mL.
The in vivo immunomodulatory activities of Tinospora crispa have been reported but its molecular mechanisms underlying its immunomodulatory properties remains obscure and the active constituents contributing to the activities have not been identified. The present study was aimed to investigate the immunomodulatory effects of T. crispa extract (TCE) and its chemical constituents on RAW 264.7 macrophages. Six known compounds including magnoflorine and syringin were isolated by various chromatographic techniques from TCE and their structures were determined spectroscopically. A validated HPLC method was used to quantify magnoflorine and syringin in the extract. The immunomodulatory effects of TCE and its isolated compounds on chemotaxis, phagocytosis, production of inflammatory mediators including reactive oxygen species (ROS), nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines which include tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) on macrophages were assessed. TCE increased the chemotaxis and phagocytic activity of macrophages and significantly enhanced the production of ROS, NO and pro-inflammatory cytokines. All alkaloids isolated, specifically magnoflorine showed remarkable inducing effects on the chemotaxis, phagocytic activity, ROS and NO productions and the secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. In contrast, syringin potently reduced the chemotaxis, phagocytic activity, ROS and NO productions and secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. TCE showed strong immunostimulant effects on various components of the immune system and these activities were possibly contributed mainly by the alkaloids specifically magnoflorine. TCE has potential to be developed as an effective natural immunostimulant for improvement of immune-related disorders.
Tinospora crispa Miers (Menispermaceae) is a climbing vine with stems rich in warts. The plant is called Akar Seruntum or Patawali in Malaysia and is widely used for treating skin complaints, malaria, bacterial abscess, high blood pressure and diabetes. In the present study, the stems of T. crispa were collected from the locality and succesively extracted with petroleum ether, followed by chloroform and ethanol. The insecticidal active extract (ethanol extract) was subjected to column chromatography of silica gel eluted with a gradient mobile phase containing hexane, chloroform and ethanol. Among the chemical constituents isolated are n-tetracosyl trans-ferulate and n-octacosyl alcohol, along with three known aporphine alkaloids; N-formylnornuciferine, N-acetylnornuciferine and lysicamine. All compounds were identified by comparing their spectroscopic data (UV, IR, 1H NMR, MS) with data from corresponding values in the literature. Isolation of n-tetracosyl trans-ferulate and noctacosyl alcohol is reported the first time for T. crispa.
Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
Boldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro.