Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Batra J, Tripathi S, Kumar A, Katz JM, Cox NJ, Lal RB, et al.
    Sci Rep, 2016;6:19063.
    PMID: 26750153 DOI: 10.1038/srep19063
    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
  2. Wijesinghe VN, Farouk IA, Zabidi NZ, Puniyamurti A, Choo WS, Lal SK
    Expert Rev Vaccines, 2021 Sep;20(9):1077-1096.
    PMID: 34296960 DOI: 10.1080/14760584.2021.1960162
    Introduction: Vaccine development for the disease caused by the herpes simplex virus (HSV) has been challenging over the years and is always in dire need of novel approaches for prevention and cure. To date, the HSV disease remains incurable and challenging to prevent. The disease is extremely widespread due to its high infection rate, resulting in millions of infection cases worldwide.Areas covered: This review first explains the diverse forms of HSV-related disease presentations and reports past vaccine history for the disease. Next, this review examines current and novel HSV vaccine approaches being studied and tested for efficacy and safety as well as vaccines in clinical trial phases I to III. Modern approaches to vaccine design using bioinformatics are described. Finally, we discuss measures to enhance new vaccine development pipelines for HSV.Expert opinion: Modernized approaches using in silico analysis and bioinformatics are emerging methods that exhibit potential for producing vaccines with enhanced targets and formulations. Although not yet fully established for HSV disease, we describe current studies using these approaches for HSV vaccine design to shed light on these methods. In addition, we provide up-to-date requirements of immunogenicity, adjuvant selection, and routes of administration.
  3. Low ZY, Wen Yip AJ, Chow VTK, Lal SK
    Rev Med Virol, 2021 Sep 21.
    PMID: 34546610 DOI: 10.1002/rmv.2300
    The family of Suppressor of Cytokine Signalling (SOCS) proteins plays pivotal roles in cytokine and immune regulation. Despite their key roles, little attention has been given to the SOCS family as compared to other feedback regulators. To date, SOCS proteins have been found to be exploited by viruses such as herpes simplex virus (HSV), hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, respiratory syncytial virus (RSV), Ebola virus, influenza A virus (IAV) and SARS-CoV, just to name a few. The hijacking and subsequent upregulation of the SOCS proteins upon viral infection, suppress the associated JAK-STAT signalling activities, thereby reducing the host antiviral response and promoting viral replication. Two SOCS protein family members, SOCS1 and SOCS3 are well-studied and their roles in the JAK-STAT signalling pathway are defined as attenuating interferon (IFN) signalling upon viral infection. The upregulation of SOCS protein by SARS-CoV during the early stages of infection implies strong similarity with SARS-CoV-2, given their closely related genomic organisation. Thus, this review aims to outline the plausibility of SOCS protein inhibitors as a potential therapeutic regimen for COVID-19 patients. We also discuss the antagonists against SOCS protein to offer an overview on the previous 'successes' of SOCS protein inhibition in various viral infections that may portray possible clues for COVID-19 disease management.
  4. Duc NT, Ramlal A, Rajendran A, Raju D, Lal SK, Kumar S, et al.
    Front Plant Sci, 2023;14:1206357.
    PMID: 37771485 DOI: 10.3389/fpls.2023.1206357
    Among seed attributes, weight is one of the main factors determining the soybean harvest index. Recently, the focus of soybean breeding has shifted to improving seed size and weight for crop optimization in terms of seed and oil yield. With recent technological advancements, there is an increasing application of imaging sensors that provide simple, real-time, non-destructive, and inexpensive image data for rapid image-based prediction of seed traits in plant breeding programs. The present work is related to digital image analysis of seed traits for the prediction of hundred-seed weight (HSW) in soybean. The image-based seed architectural traits (i-traits) measured were area size (AS), perimeter length (PL), length (L), width (W), length-to-width ratio (LWR), intersection of length and width (IS), seed circularity (CS), and distance between IS and CG (DS). The phenotypic investigation revealed significant genetic variability among 164 soybean genotypes for both i-traits and manually measured seed weight. Seven popular machine learning (ML) algorithms, namely Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Random Forest (RF), Support Vector Regression (SVR), LASSO Regression (LR), Ridge Regression (RR), and Elastic Net Regression (EN), were used to create models that can predict the weight of soybean seeds based on the image-based novel features derived from the Red-Green-Blue (RGB)/visual image. Among the models, random forest and multiple linear regression models that use multiple explanatory variables related to seed size traits (AS, L, W, and DS) were identified as the best models for predicting seed weight with the highest prediction accuracy (coefficient of determination, R2=0.98 and 0.94, respectively) and the lowest prediction error, i.e., root mean square error (RMSE) and mean absolute error (MAE). Finally, principal components analysis (PCA) and a hierarchical clustering approach were used to identify IC538070 as a superior genotype with a larger seed size and weight. The identified donors/traits can potentially be used in soybean improvement programs.
  5. Lee CZ, Zoqratt MZHM, Phipps ME, Barr JJ, Lal SK, Ayub Q, et al.
    Sci Rep, 2022 Feb 03;12(1):1824.
    PMID: 35115615 DOI: 10.1038/s41598-022-05656-3
    The human gut contains a complex microbiota dominated by bacteriophages but also containing other viruses and bacteria and fungi. There are a growing number of techniques for the extraction, sequencing, and analysis of the virome but currently no standardized protocols. This study established an effective workflow for virome analysis to investigate the virome of stool samples from two understudied ethnic groups from Malaysia: the Jakun and Jehai Orang Asli. By using the virome extraction and analysis workflow with the Oxford Nanopore Technology, long-read sequencing successfully captured close to full-length viral genomes. The virome composition of the two indigenous Malaysian communities were remarkably different from those found in other parts of the world. Additionally, plant viruses found in the viromes of these individuals were attributed to traditional food-seeking methods. This study establishes a human gut virome workflow and extends insights into the healthy human gut virome, laying the groundwork for comparative studies.
  6. Sharma A, Batra J, Stuchlik O, Reed MS, Pohl J, Chow VTK, et al.
    Front Microbiol, 2020;11:581867.
    PMID: 33101257 DOI: 10.3389/fmicb.2020.581867
    Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.
  7. Lim CM, Lal SK, Isa NM, Omar AR, Choo WS
    Heliyon, 2024 Jun 30;10(12):e33049.
    PMID: 39021953 DOI: 10.1016/j.heliyon.2024.e33049
    Seasonal influenza affects millions of lives worldwide, with the influenza A virus (IAV) responsible for pandemics and annual epidemics, causing the most severe illnesses resulting in patient hospitalizations or death. With IAV threatening the next global influenza pandemic, it is a race against time to search for antiviral drugs. Betacyanins are unique nitrogen-containing and water-soluble reddish-violet pigments that have been reported to possess antiviral properties against the dengue virus. This study aimed to examine the antiviral effect of betacyanins from red pitahaya (Hylocereus polyrhizus) on IAV-infected lung epithelial A549 cells. HPLC and LC-MS analysis of extracted betacyanin showed four betacyanins in the betacyanin fraction: phyllocactin, hylocerenin, betanin, and isobetanin. Cytotoxicity assay showed that betacyanin fractions were not cytotoxic to A549 cells at concentrations below 100 μg/mL. Betacyanin fraction concentrations of 12.5, 25.0, and 50.0 μg/mL prevented the formation of viral cytopathic effect and reduced virus titer in IAV-infected cells up to 72 h. A downregulation of protein and mRNA nucleoprotein expression levels was observed after treatment with 25.0 and 50.0 μg/mL of betacyanin fraction after 24 h, thereby providing evidence for the antiviral activity of betacyanin from red pitahaya against IAV in vitro.
  8. Sharma A, Ong JW, Loke MF, Chua EG, Lee JJ, Choi HW, et al.
    Microorganisms, 2021 May 31;9(6).
    PMID: 34073047 DOI: 10.3390/microorganisms9061193
    The ongoing COVID-19 pandemic is a clear and present threat to global public health. Research into how the causative SARS-CoV-2 virus together with its individual constituent genes and proteins interact with target host cells can facilitate the development of improved strategies to manage the acute and long-term complications of COVID-19. In this study, to better understand the biological roles of critical SARS-CoV-2 proteins, we determined and compared the host transcriptomic responses of the HL-CZ human pro-monocytic cell line upon transfection with key viral genes encoding the spike S1 subunit, S2 subunit, nucleocapsid protein (NP), NSP15 (endoribonuclease), and NSP16 (2'-O-ribose-methyltransferase). RNA sequencing followed by gene set enrichment analysis and other bioinformatics tools revealed that host genes associated with topologically incorrect protein, virus receptor activity, heat shock protein binding, endoplasmic reticulum stress, antigen processing and presentation were up-regulated in the presence of viral spike S1 expression. With spike S2 expression, pro-monocytic genes associated with the interferon-gamma-mediated signaling pathway, regulation of phosphatidylinositol 3-kinase activity, adipocytokine signaling pathway, and insulin signaling pathway were down-regulated, whereas those associated with cytokine-mediated signaling were up-regulated. The expression of NSP15 induced the up-regulation of genes associated with neutrophil degranulation, neutrophil-mediated immunity, oxidative phosphorylation, prion disease, and pathways of neurodegeneration. The expression of NSP16 resulted in the down-regulation of genes associated with S-adenosylmethionine-dependent methyltransferase activity. The expression of NP down-regulated genes associated with positive regulation of neurogenesis, nervous system development, and heart development. Taken together, the complex transcriptomic alterations arising from these viral-host gene interactions offer useful insights into host genes and their pathways that potentially contribute to SARS-CoV-2 pathogenesis.
  9. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
  10. Thukral V, Varshney B, Ramly RB, Ponia SS, Mishra SK, Olsen CM, et al.
    Virus Genes, 2018 Apr;54(2):199-214.
    PMID: 29218433 DOI: 10.1007/s11262-017-1526-z
    The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy. Like NS1 protein of Influenza A virus, s8ORF2 of ISAV is implicated in interferon antagonism and RNA-binding functions. In this study, we investigated the role of s8ORF2 in RNAi suppression in a well-established Agrobacterium transient suppression assay in stably silenced transgenic Nicotiana xanthi. In addition, s8ORF2 was identified as a novel interactor with SsMov10, a key molecule responsible for RISC assembly and maturation in the RNAi pathway. This study thus sheds light on a novel route undertaken by viral proteins in promoting viral growth, using the host RNAi machinery.
  11. Ramlal A, Bhat I, Nautiyal A, Baweja P, Mehta S, Kumar V, et al.
    Front Physiol, 2023;14:1172684.
    PMID: 37324400 DOI: 10.3389/fphys.2023.1172684
    Cardiovascular diseases (CVDs) are one of the major reasons for deaths globally. The renin-angiotensin-aldosterone system (RAAS) regulates body hypertension and fluid balance which causes CVD. Angiotensin-converting enzyme I (ACE I) is the central Zn-metallopeptidase component of the RAAS playing a crucial role in maintaining homeostasis of the cardiovascular system. The available drugs to treat CVD have many side effects, and thus, there is a need to explore phytocompounds and peptides to be utilized as alternative therapies. Soybean is a unique legume cum oilseed crop with an enriched source of proteins. Soybean extracts serve as a primary ingredient in many drug formulations against diabetes, obesity, and spinal cord-related disorders. Soy proteins and their products act against ACE I which may provide a new scope for the identification of potential scaffolds that can help in the design of safer and natural cardiovascular therapies. In this study, the molecular basis for selective inhibition of 34 soy phytomolecules (especially of beta-sitosterol, soyasaponin I, soyasaponin II, soyasaponin II methyl ester, dehydrosoyasaponin I, and phytic acid) was evaluated using in silico molecular docking approaches and dynamic simulations. Our results indicate that amongst the compounds, beta-sitosterol exhibited a potential inhibitory action against ACE I.
  12. Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, et al.
    Antiviral Res, 2020 Apr;176:104747.
    PMID: 32092305 DOI: 10.1016/j.antiviral.2020.104747
    Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links