Displaying publications 341 - 360 of 8235 in total

Abstract:
Sort:
  1. Antonova I, Gridnyev O, Galchinskaya V
    Wiad Lek, 2022;75(11 pt 2):2779-2784.
    PMID: 36591768 DOI: 10.36740/WLek202211211
    OBJECTIVE: The aim: The aim of the present study was to establish a link between polymorphic variants of the microsomal epoxide hydrolase gene and the severity of COPD in patients with COPD and coronary heart disease.

    PATIENTS AND METHODS: Materials and methods: The study included 128 patients with COPD and IHD, who were divided into two groups: group 1 included 72 patients with in¬frequent exacerbations of COPD (0-1 per year) and group 2 included 56 patients with frequent exacerbations of COPD (exacerbation of COPD ≥2 per year). The control groups consisted of 15 smokers without COPD and IHD, 11 practically healthy non-smokers and 11 patients with IHD who do not smoke. All patients underwent DNA isolation and purification, followed by determination of the Tyr113His polymorphism of the EPHX1 microsomal epoxide hydrolase gene (rs1051740).

    RESULTS: Results: There was a significant association of the carriage of the CC genotype of the EPHX1 gene in patients with COPD and IHD (RO = 21.326 [95.0% CI 4.217-107.846], p <0.001) with a more severe course of COPD compared with the TT genotype of the EPHX1 gene.

    CONCLUSION: Conclusions: Patients with COPD and coronary heart disease who were carriers of a homozygous variant СС of the EPHX1 gene have a reliable association with a more severe course of COPD with frequent exacerbations (higher class according to GOLD classification and more severe symptoms of COPD according to the СAT questionnaire).

    Matched MeSH terms: Hydrolases/genetics; Genetic Predisposition to Disease/genetics
  2. Jamaludin NA, Jamaluddin JAF, Rahim MA, Mohammed Akib NA, Ratmuangkhwang S, Mohd Arshaad W, et al.
    PeerJ, 2022;10:e13706.
    PMID: 35860045 DOI: 10.7717/peerj.13706
    The spotted sardinella, Amblygaster sirm (Walbaum, 1792), is a commercial sardine commonly caught in Malaysia. Lack of management of these marine species in Malaysian waters could lead to overfishing and potentially declining fish stock populations. Therefore, sustainable management of this species is of paramount importance to ensure its longevity. As such, molecular information is vital in determining the A. sirm population structure and management strategy. In the present study, mitochondrial DNA Cytochrome b was sequenced from 10 A. sirm populations: the Andaman Sea (AS) (two), South China Sea (SCS) (six), Sulu Sea (SS) (one), and Celebes Sea (CS) (one). Accordingly, the intra-population haplotype diversity (Hd) was high (0.91-1.00), and nucleotide diversity (π) was low (0.002-0.009), which suggests a population bottleneck followed by rapid population growth. Based on the phylogenetic trees, minimum spanning network (MSN), population pairwise comparison, and F ST,and supported by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA) tests, distinct genetic structures were observed (7.2% to 7.6% genetic divergence) between populations in the SCS and its neighboring waters, versus those in the AS. Furthermore, the results defined A. sirm stock boundaries and evolutionary between the west and east coast (which shares the same waters as western Borneo) of Peninsular Malaysia. In addition, genetic homogeneity was revealed throughout the SCS, SS, and CS based on the non-significant F STpairwise comparisons. Based on the molecular evidence, separate management strategies may be required for A. sirm of the AS and the SCS, including its neighboring waters.
    Matched MeSH terms: Fishes/genetics; Mitochondria/genetics
  3. Kanisan DP, Quek ZBR, Oh RM, Afiq-Rosli L, Lee JN, Huang D, et al.
    Microb Ecol, 2023 Jan;85(1):37-48.
    PMID: 35043221 DOI: 10.1007/s00248-022-01958-1
    Coral-associated bacteria play critical roles in the regulation of coral health and function. Environmental perturbations that alter the bacterial community structure can render the coral holobiont more susceptible and less resilient to disease. Understanding the natural variation of the coral microbiome across space and host species provides a baseline that can be used to distinguish shifts in community structure. Using a 16S rRNA gene metabarcoding approach, this study examines bacterial community structure across three scleractinian coral hosts. Our results show that corals of three regions-eastern and western Peninsular Malaysia and Singapore-host distinct bacterial communities; despite these differences, we were able to identify a core microbiome shared across all three species. This core microbiome was also present in samples previously collected in Thailand, suggesting that these core microbes play an important role in promoting and maintaining host health. For example, several have been identified as dimethylsulfoniopropionate (DMSP) metabolizers that have roles in sulfur cycling and the suppression of bacterial pathogens. Pachyseris speciosa has the most variable microbiome, followed by Porites lutea, with the composition of the Diploastrea heliopora microbiome the least variable throughout all locations. Microbial taxa associated with each region or site are likely shaped by local environmental conditions. Taken together, host identity is a major driver of differences in microbial community structure, while environmental heterogeneity shapes communities at finer scales.
    Matched MeSH terms: Bacteria/genetics; RNA, Ribosomal, 16S/genetics
  4. Ali RH, Alateeqi M, Jama H, Alrumaidhi N, Alqallaf A, Mohammed EM, et al.
    J Clin Pathol, 2023 Feb;76(2):103-110.
    PMID: 34489310 DOI: 10.1136/jclinpath-2021-207876
    AIMS: Accurate assessment of 1p/19q codeletion status in diffuse gliomas is of paramount importance for diagnostic, prognostic and predictive purposes. While targeted next generation sequencing (NGS) has been widely implemented for glioma molecular profiling, its role in detecting structural chromosomal variants is less well established, requiring supplementary informatic tools for robust detection. Herein, we evaluated a commercially available amplicon-based targeted NGS panel (Oncomine Comprehensive Assay v3) for the detection of 1p/19q losses in glioma tissues using an Ion Torrent platform and the standard built-in NGS data analysis pipeline solely.

    METHODS: Using as little as 20 ng of DNA from formalin-fixed paraffin-embedded tissues, we analysed 25 previously characterised gliomas for multi-locus copy number losses (CNLs) on 1p and 19q, including 11 oligodendrogliomas (ODG) and 14 non-oligodendroglial (non-ODG) controls. Fluorescence in-situ hybridisation (FISH) was used as a reference standard.

    RESULTS: The software confidently detected combined contiguous 1p/19q CNLs in 11/11 ODGs (100% sensitivity), using a copy number cut-off of ≤1.5 and a minimum of 10 amplicons covering the regions. Only partial non-specific losses were identified in non-ODGs (100% specificity). Copy number averages of ODG and non-ODG groups were significantly different (p<0.001). NGS was concordant with FISH and was superior to it in distinguishing partial from contiguous losses indicative of whole-arm chromosomal deletion.

    CONCLUSIONS: This commercial NGS panel, along with the standard Ion Torrent algorithm, accurately detected 1p/19q losses in ODG samples, obviating the need for specialised custom-made informatic analyses. This can easily be incorporated into routine glioma workflow as an alternative to FISH.

    Matched MeSH terms: Chromosomes, Human, Pair 1/genetics; Isocitrate Dehydrogenase/genetics
  5. Chong ZX, Ho WY, Yeap SK
    Biochem Pharmacol, 2023 Apr;210:115466.
    PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466
    Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
    Matched MeSH terms: Phosphatidylinositol 3-Kinases/genetics; Glycogen Synthase Kinase 3 beta/genetics
  6. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
    Matched MeSH terms: Gossypium/genetics; RNA, Ribosomal, 16S/genetics
  7. Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A
    Mol Neurobiol, 2023 Aug;60(8):4169-4183.
    PMID: 37046137 DOI: 10.1007/s12035-023-03337-4
    Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
    Matched MeSH terms: Aging/genetics; Telomere/genetics
  8. Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, et al.
    Sci Adv, 2024 Apr 26;10(17):eadk3852.
    PMID: 38657063 DOI: 10.1126/sciadv.adk3852
    Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
    Matched MeSH terms: Genetics, Population; Hemiptera/genetics
  9. Das S, Pandey AK, Morris DE, Anderson R, Lim V, Wie CC, et al.
    BMC Genomics, 2024 Apr 17;25(1):381.
    PMID: 38632538 DOI: 10.1186/s12864-024-10276-4
    Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.
    Matched MeSH terms: beta-Lactamases/genetics; Virulence/genetics
  10. Lai MY, Abdul Hamid M, Jelip J, Mudin RN, Lau YL
    Am J Trop Med Hyg, 2023 May 03;108(5):882-886.
    PMID: 36913921 DOI: 10.4269/ajtmh.22-0657
    This study highlights the development of two lateral flow recombinase polymerase amplification assays for the diagnosis of human malaria. The lateral flow cassettes contained test lines that captured biotin-, 6-carboxyfluorescein, digoxigenin-, cyanine 5-, and dinitrophenyl-labeled amplicons. The overall process can be completed in 30 minutes. Recombinase polymerase amplification coupled with lateral flow had a detection limit of 1 copy/µL for Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. No cross-reactivity was observed among nonhuman malaria parasites such as Plasmodium coatneyi, Plasmodium cynomolgi, Plasmodium brasilanium, Plasmodium inui, Plasmodium fragile, Toxoplasma gondii, Sarcocystis spp., Brugia spp., and 20 healthy donors. It is rapid, highly sensitive, robust, and easy to use. The result can be read without the need for special equipment and thus has the potential to serve as an effective alternative to polymerase chain reaction methods for the diagnosis of malaria.
    Matched MeSH terms: Plasmodium falciparum/genetics; Plasmodium vivax/genetics
  11. Zhao MM, Awang Z, Jumuddin FAB
    Asian Pac J Cancer Prev, 2024 Feb 01;25(2):603-608.
    PMID: 38415547 DOI: 10.31557/APJCP.2024.25.2.603
    OBJECTIVE: To analyze the high expression of peroxisome membrane protein 4 (PXMP4) in hepatocellular carcinoma (HCC) and its clinical significance.

    METHODS: The expression of PXMP4 mRNA in HCC tissues and corresponding adjacent tissues was detected by Q-PCR, and the expression of PXMP4 protein was detected by Western blot and immunohistochemistry. The correlation of PXMP4 protein expression with clinicopathological features and prognosis of HCC was analyzed.

    RESULTS: The expression levels of PXMP4 mRNA and protein in HCC tissues were significantly higher than those in adjacent tissues (P < 0.05), and its high expression was significantly correlated with tumor differentiation, lymph node metastasis, depth of invasion and TNM stage (P < 0.05). Patients with high expression of PXMP4 had a poor prognosis (P < 0.05).

    CONCLUSION: The high expression of PXMP4 may promote the occurrence and development of HCC, and inhibition of PXMP4 may be one of the potential molecular targets for targeted therapy of HCC.

    Matched MeSH terms: RNA, Messenger/genetics; Biomarkers, Tumor/genetics
  12. Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M
    FEMS Microbiol Rev, 2023 Sep 05;47(5).
    PMID: 37715317 DOI: 10.1093/femsre/fuad052
    Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
    Matched MeSH terms: Bacteria/genetics; Bacterial Proteins/genetics
  13. Imon RR, Aktar S, Morshed N, Nur SM, Mahtarin R, Rahman FA, et al.
    Medicine (Baltimore), 2023 Nov 10;102(45):e35347.
    PMID: 37960765 DOI: 10.1097/MD.0000000000035347
    Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.
    Matched MeSH terms: Neoplasm Recurrence, Local/genetics; Glypicans/genetics
  14. Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, M Liao L, Papenbrock J
    PLoS One, 2021;16(10):e0258956.
    PMID: 34679102 DOI: 10.1371/journal.pone.0258956
    The genus Halophila shows the highest species diversity within the seagrass genera. Southeast Asian countries where several boundary lines exist were considered as the origin of seagrasses. We hypothesize that the boundary lines, such as Wallace's and Lydekker's Lines, may act as marine geographic barriers to the population structure of Halophila major. Seagrass samples were collected at three islands in Vietnamese waters and analyzed by the molecular maker ITS. These sequences were compared with published ITS sequences from seagrasses collected in the whole region of interest. In this study, we reveal the haplotype and nucleotide diversity, linking population genetics, phylogeography, phylogenetics and estimation of relative divergence times of H. major and other members of the Halophila genus. The morphological characters show variation. The results of the ITS marker analysis reveal smaller groups of H. major from Myanmar, Shoalwater Bay (Australia) and Okinawa (Japan) with high supporting values. The remaining groups including Sri Lanka, Viet Nam, the Philippines, Thailand, Malaysia, Indonesia, Two Peoples Bay (Australia) and Tokushima (Japan) showed low supporting values. The Wallacea region shows the highest haplotype and also nucleotide diversity. Non-significant differences were found among regions, but significant differences were presented among populations. The relative divergence times between some members of section Halophila were estimated 2.15-6.64 Mya.
    Matched MeSH terms: Genetics, Population; Hydrocharitaceae/genetics*
  15. Fan JY, Dama G, Liu YL, Guo WY, Lin JT
    Mol Biol (Mosk), 2023;57(4):668-670.
    PMID: 37528786
    In an in vitro culture system, primary hepatocytes usually display a low proliferation capacity, accompanied with a decrease of viability and a loss of hepatocyte-specific functions. Previous studies have demonstrated that the combination introductions of certain hepatocyte-specific transcription factors are able to convert fibroblasts into functional hepatocyte-like cells. However, such combinational usage of transcription factors in primary hepatocytes culture has not yet sufficiently studied. The forkhead box protein A3 (FoxA3) and hepatocyte nuclear factor 4α (Hnf4α) are liver-enriched transcription factors that play vital roles in the differentiation, and maintenance of hepatocytes. Thus, we simultaneously overexpressed the two genes, Foxa3 and Hnf4α, in rat hepatocytes and observed that the combinational augmentation of these two transcription factors have enhanced the proliferation and stabilized the hepatocyte-specific functions of primary hepatocytes over a long-term culture period.
    Matched MeSH terms: Cell Differentiation/genetics; Cell Proliferation/genetics
  16. Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A
    Panminerva Med, 2023 Jun;65(2):166-178.
    PMID: 37335245 DOI: 10.23736/S0031-0808.23.04871-1
    Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
    Matched MeSH terms: Pregnancy Outcome/genetics; DNA Methylation/genetics
  17. Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, et al.
    Plant Biotechnol J, 2021 Feb;19(2):273-284.
    PMID: 32744350 DOI: 10.1111/pbi.13460
    In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
    Matched MeSH terms: Plant Diseases/genetics*; Disease Resistance/genetics*
  18. Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, et al.
    Biomed Pharmacother, 2024 Apr;173:116275.
    PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275
    Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics; Mutation/genetics
  19. Gerszberg A
    Planta, 2018 Nov;248(5):1037-1048.
    PMID: 30066219 DOI: 10.1007/s00425-018-2961-3
    The main goal of this publication is an overview of the biotechnological achievements concerning in vitro cultures and transformation of Brassica oleracea var. capitata. Faced with the requirements of the global food market, intensified work on the genetic transformation of economically important plants is carried out in laboratories around the world. The development of efficient procedures for their regeneration and transformation could be a good solution for obtaining, in a shorter time than by traditional methods, plants with desirable traits. Furthermore, conventional breeding methods are insufficient for crop genetic improvement not only because of being time-consuming but also because they are severely limited by sexual incompatibility barriers. This problem has been overcome by genetic engineering, which seems to be a very good technique for cabbage improvement. Despite the huge progress that has been made in the field of plant regeneration and transformation methods, up to now, no routine transformation procedure has been developed in the case of cabbage. This problem stems from the fact that the efficiency of cabbage transformation is closely related to the genotype and some varieties are recalcitrant to transformation. It is obvious that it is not possible to establish one universal regeneration and transformation protocol for all varieties of cabbage. Therefore, it seems fully justified to develop the above-mentioned procedures for individual economically important cultivars. Despite the obstacles of cabbage transformation in laboratories of many countries, especially those where this vegetable is extremely popular (e.g., China, India, Korea, Malaysia, Pakistan), such attempts are made. This article reviews the achievements in the field of tissue culture and cabbage transformation from the last two decades.
    Matched MeSH terms: Brassica/genetics*; Plants, Genetically Modified/genetics*
  20. Bahbahani H, Alfoudari A, Al-Ateeqi A, Al Abri M, Almathen F
    Animal, 2024 Mar;18(3):101098.
    PMID: 38377812 DOI: 10.1016/j.animal.2024.101098
    Dromedary camels are a domestic species characterized by various adaptive traits. Limited efforts have been employed toward identifying genetic regions and haplotypes under selection that might be related to such adaptations. These genetic elements are considered valuable sources that should be conserved to maintain the dromedaries' adaptability. Here, we have analyzed whole genome sequences of 40 dromedary camels from different Arabian Peninsula populations to assess their genetic relationship and define regions with signatures of selection. Genetic distinction based on geography was observed, classifying the populations into four groups: (1) North and Central, (2) West, (3) Southwest, and (4) Southeast, with substantial levels of genetic admixture. Using the de-correlated composite of multiple signal approach, which combines four intra-population analyses (Tajima's D index, nucleotide diversity, integrated haplotype score, and number of segregating sites by length), a total of 36 candidate regions harboring 87 genes were identified to be under positive selection. These regions overlapped with 185 haplotype blocks encompassing 1 340 haplotypes, of which 30 (∼2%) were found to be approaching fixation. The defined candidate genes are associated with different biological processes related to the dromedaries' adaptive physiologies, including neurological pathways, musculoskeletal development, fertility, fat distribution, immunity, visual development, and kidney physiology. The results of this study highlight opportunities for further investigations at the whole-genome level to enhance our understanding of the evolutionary pressures shaping the dromedary genome.
    Matched MeSH terms: Haplotypes/genetics; Genome/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links