Displaying publications 281 - 300 of 411 in total

Abstract:
Sort:
  1. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: Neoplastic Stem Cells/drug effects; Neoplastic Stem Cells/metabolism; Neoplastic Stem Cells/pathology*
  2. Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, et al.
    PMID: 33826152 DOI: 10.1002/bab.2162
    Despite a lot of intensive research on cells-scaffolds interaction, focused are mainly on the capacity of construct scaffolds to regulate cell mobility, migration and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions has profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold is a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSCs interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSCs interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products. This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Stem Cells
  3. Ko CCH, Chia WK, Selvarajah GT, Cheah YK, Wong YP, Tan GC
    Diagnostics (Basel), 2020 Sep 19;10(9).
    PMID: 32961774 DOI: 10.3390/diagnostics10090721
    Breast cancer is one of the leading causes of cancer-related deaths in women worldwide, and its incidence is on the rise. A small fraction of cancer stem cells was identified within the tumour bulk, which are regarded as cancer-initiating cells, possess self-renewal and propagation potential, and a key driver for tumour heterogeneity and disease progression. Cancer heterogeneity reduces the overall efficacy of chemotherapy and contributes to treatment failure and relapse. The cell-surface and subcellular biomarkers related to breast cancer stem cell (BCSC) phenotypes are increasingly being recognised. These biomarkers are useful for the isolation of BCSCs and can serve as potential therapeutic targets and prognostic tools to monitor treatment responses. Recently, the role of noncoding microRNAs (miRNAs) has extensively been explored as novel biomarker molecules for breast cancer diagnosis and prognosis with high specificity and sensitivity. An in-depth understanding of the biological roles of miRNA in breast carcinogenesis provides insights into the pathways of cancer development and its utility for disease prognostication. This review gives an overview of stem cells, highlights the biomarkers expressed in BCSCs and describes their potential role as prognostic indicators.
    Matched MeSH terms: Neoplastic Stem Cells
  4. Mislia Othman, Muhammad Azrul Zabidi
    MyJurnal
    This review paper aims to present an overview of the development of blood substitute particularly red blood cell substitute or artificial oxygen carrier. Knowledge on human blood inspired from the understanding of human blood circulation system. Ibn Nafis was first to describe that blood flow through respiratory system before entering the heart. This finding denied the claim that tiny pores present within the septum of the heart. Then, William Harvey further described human cardiovascular system in detail and contributed to better understanding on the roles of blood in body. Several blood transfusions were attempted using blood collected from human, animal and other blood substitutes such as milk before the practice was banned for almost 150 years in Europe. Major discoveries on blood group and antibody reaction have made blood transfusion safer. However, several issues and challenges have re-triggered the exploration to develop red cell substitutes. Two approaches have been taken to develop the red blood cell substitute which are classified into biological and chemical based oxygen carriers. The earliest efforts have been on haemoglobin based oxygen carrier (HBOC) and perfluorocarbon (PFC) while the recent developement are on polymer-based oxygen carrier and in-vitro stem cell derived red blood cell.
    Matched MeSH terms: Stem Cells
  5. Haque N, Widera D, Abu Kasim NH
    Adv Exp Med Biol, 2019;1084:175-186.
    PMID: 30771186 DOI: 10.1007/5584_2018_299
    BACKGROUND: The response of stem cells to paracrine factors within the host's body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS).

    METHODS: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.

    RESULTS: Proliferation of SHED was significantly higher (p 

    Matched MeSH terms: Stem Cells
  6. Hassan MNFB, Yazid MD, Yunus MHM, Chowdhury SR, Lokanathan Y, Idrus RBH, et al.
    Stem Cells Int, 2020;2020:9529465.
    PMID: 32733574 DOI: 10.1155/2020/9529465
    Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.
    Matched MeSH terms: Multipotent Stem Cells
  7. Cho L, Kaur A, Cereb N, Lin PY, Yang KL
    HLA, 2020 08;96(2):217-218.
    PMID: 32227685 DOI: 10.1111/tan.13873
    One nucleotide substitution in codon 89 of HLA-B*38:02:01:01 results in a novel allele, HLA-B*38:64.
    Matched MeSH terms: Hematopoietic Stem Cells
  8. Kaur A, Cho L, Cereb N, Lin PY, Yang KL
    HLA, 2020 07;96(1):94-95.
    PMID: 32166893 DOI: 10.1111/tan.13862
    DNA substitutions from codons 69 to 71 of HLA-B*35:05:01:01 result in a novel allele, HLA-B*35:368.
    Matched MeSH terms: Hematopoietic Stem Cells
  9. Nur Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    Cell Biol Int, 2012;36(12):1145-53.
    PMID: 22957758 DOI: 10.1042/CBI20120044
    Cell-based therapy using stem cells has emerged as one of the pro-angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion-derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin-matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic-endogenic-associated genes (VEGF, bFGF, PGF, HGF, Ang-1, PECAM-1, eNOS, Ve-cad, CD34, VEGFR-2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang-1, eNOS, VEGFR-2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct-4, Nanog (3), FZD9, ABCG-2 and BST-1. The induced cells were positive for PECAM-1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin-matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell-based therapy for pro-angiogenic purpose.
    Matched MeSH terms: Stem Cells/cytology; Stem Cells/drug effects; Stem Cells/metabolism*
  10. Kqueen, Cheah Yoke, Maryam Abdulla Seif, Mohamed Ikhtifar Rafi, Lim, Wei Meng, Ling, Clemente Michael Wong Vui, Tan, Geok Yuan Annie
    MyJurnal
    Global warming is the main concern in today’s century as it comes with numerous side effects to the natural environment. Open Top Chambers (OTC) consist of metal constructions with transparent vertical side-walls and a frustum on top. An opening in the middle of the frustum allows an air exchange to reduce temperature and humidity effects in the chamber. The size of the open top chamber which is located in Universiti Putra Malaysia is slanted 60o, 50cm tall, 2.08m basal diameter hexagon chamber. The Open Top Chamber experiments were carried out to determine how much global warming has affected and is still affecting the temperature, pH, the moisture and the growth of the microbes in the tropical soil. The aim of this study is to elucidate the effects of temperature increase on the soil microbes’ population and on the pH of the soil. The study was conducted to observe the effect of heat on the population of soil microbes and the pH of the soil which was collected on the same day for 6 consecutive months. The microbes from the samples were grown on agar plates. The population of microbes on the plates were used as values were for Colony Forming Unit (CFU) value calculations. The effects of OTCs on mean temperature showed a large range of CFU values throughout the 6 months but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related, indicating that the presence of warming effect by the OTCs. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming. This study will be useful for the understanding of the global warming effect on microbes. The Open Top Chamber experiment has proven to be one of the effective model for global warming research and data collected especially on the growth of soil microbial obtained would be of great use for further experiments.
    Matched MeSH terms: Stem Cells
  11. Borojerdi, Mohadese Hashem, Maqbool, Maryam, Zuraidah Yusoff, Vidyadaran, Sharmili, Hwa, Ling King, George, Elizabeth, et al.
    MyJurnal
    Introduction: During the last three decades hematopoietic stem cell transplantation (HSCT) has become a well-established treatment for many hematologic malignancies. The most important limitation for HSC transplantation is the low number of hematopoietic stem cells (HSC) that can lead to delayed engraftment or graft failures. Numerous attempts have been made to improve in vitro HSC expansion via optimization of various methods such as isolation techniques, supplementing with growth factors, utilizing stromal cells as feeder layer and other culture conditions. Objective: This project is aimed to decipher the efficiency of an isolation technique and retrieval of culture expanded HSC from feeder layer using two different harvesting methods. Materials and Methods: Hematopoietic stem cells from human umbilical cord blood were isolated via MACS mediated CD34+ double sorting. Then, the cells were cultured onto MSC feeder layer for 3 and 5 days. Culture expanded cells were harvested using two different harvesting method namely cell aspiration and trypsinization methods. Hematopoietic stem cell expansion index were calculated based on harvesting methods for each time point. Results: The numbers of HSC isolated from human umbilical cord blood were 1.64 x 106 and 1.20 x106 cells at single and double sortings respectively. Although the number of sorted cells diminished at the second sorting yet the yield of CD34+ purity has increased from 43.73% at single sorting to 81.40% at double sorting. Employing the trypsinization method, the HSC harvested from feeder layer showed a significant increase in expansion index (EI) as compared to the cell aspiration harvesting method (p≤ 0.05). However, the purity of CD34+ HSC was found higher when the cells were harvested using aspiration method (82.43%) as compared to the trypsinization method (74.13%). Conclusion: A pure population of CD34+ HSC can be retrieved when the cells were double sorted using MACS and expanded in culture after being harvested using cell aspiration method.
    Matched MeSH terms: Hematopoietic Stem Cells
  12. Aksu F, Topacoglu H, Arman C, Atac A, Tetik S, Hasanovic A, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:95-229.
    PMID: 27392492 DOI: 10.1007/BF03371486
    Conference abstracts: Malaysia in affiliation
    (1). PO-211. AGE-SPECIFIC STRESS-MODULATED
    CHANGES OF SPLENIC IMMUNOARCHITECTURE
    IN THE GROWING BODY. Marina Yurievna Kapitonova, Syed Baharom Syed Ahmad Fuad, Flossie Jayakaran; Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Malaysia
    [email protected]
    (2). PO-213. A DETAILED OSTEOLOGICAL STUDY OF THE ANOMALOUS GROOVES NEAR THE
    MASTOID NOTCH OF THE SKULL. ISrijit Das, 2Normadiah Kassim, lAzian Latiff, IFarihah Suhaimi, INorzana Ghafar, lKhin Pa Pa Hlaing, lIsraa Maatoq, IFaizah Othman; I Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2 Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia. das_sri [email protected]
    (3). PO-21S. FIRST LUMBRICAL MUSCLE OF THE
    PALM: A DETAILED ANATOMICAL STUDY WITH
    CLINICAL IMPLICATIONS. Srijit Das, Azian Latiff, Parihah Suhaimi, Norzana Ghafar, Khin Pa Pa Hlaing, Israa Maatoq, Paizah Othman; Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. [email protected]
    (4). PO-336. IMPROVEMENT IN EXPERIMENTALLY
    INDUCED INFRACTED CARDIAC FUNCTION
    FOLLOWING TRANSPLANTATION OF HUMAN
    UMBILICAL CORD MATRIX-DERIVED
    MESENCHYMAL CELLS. lSeyed Noureddin Nematollahi-Mahani, lMastafa Latifpour, 2Masood Deilami, 3Behzad Soroure-Azimzadeh, lSeyed
    Hasan Eftekharvaghefi, 4Fatemeh Nabipour, 5Hamid
    Najafipour, 6Nouzar Nakhaee, 7Mohammad Yaghoobi, 8Rana Eftekharvaghefi, 9Parvin Salehinejad, IOHasan Azizi; 1 Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran; 2 Department of Cardiosurgery, Hazrat-e Zahra Hospital, Kerman, Iran; 3 Department of Cardiology, Kerman University of Medical Sciences, Kerman, Iran; 4 Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran; 5 Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran; 6 Department of Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; 7 Department
    of Biotechnology, Research Institute of Environmental Science, International Center for Science, High Technology & Environmental Science, Kerman, Iran; 8 Students Research Center, Kerman University of Medical Sciences, Kerman, Iran; 9 Institute of Bioscience, University Putra Malaysia,
    Kuala Lumpur, Malaysia; 10 Department of Stem Cell, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran. [email protected]
    (5).
    Matched MeSH terms: Stem Cells
  13. Chan, L.L., Law, C.W., Hunn, P.S., Yew, C.B., Lim, P.P.L., Teo, L.T., et al.
    MyJurnal
    In Malaysia, an estimated 50 children per annum suffering from a variety of haematological and inherited disorders would benefit from bone marrow or stem cell trans-plantation. By mendelian inheritance 25% of these children would be able to find a sibling who is a matched histocompatible donor. For the remaining 75% to have a chance at survival, search from another source would have to be made. This could mean a mismatched non-sibling related donor or a matched unrelated donor. We studied the chance of a Malaysian patient finding a matched sibling donor and a matched unrelated donor. Human Leucocyte Antigen (HLA) data from patients and their siblings were analysed. The HLA data were matched against the largest Asian bone marrow donor registry in Taiwan. 95% of the 138,744 donors in this registry come from Taiwanese Hokkien ancestry.
    Matched MeSH terms: Stem Cells
  14. Fathilah, A.R., Rahim, Z.H.A., Othman, Y.
    Malaysian Dental Journal, 2007;28(2):92-96.
    MyJurnal
    The tooth provides a non-shedding surface ideal for microbial and plaque accumulation. Despite being exposed to regular environmental perturbations, the microbial composition and proportions in the plaque often remains in homeostasis and is relatively stable over time. Supragingival plaque sampled from various sites on the tooth surface was pooled and conventionally analyzed for its microbial constituent. Classification of microbial isolates was made based on the characteristics exhibited by the growth colonies, Gram-stained cells, as well as biochemical reactions using the API Identification System kit. Observation was also made of the colony forming units on both non-selective and selective agar culture plates. A variety of bacteria, both of the facultative and anaerobic types, were isolated from the supragingival plaque of the Malaysian population. Among those found to predominate the supragingival plaque include the Gram positive and Gram negative cocci and rods from the genera Streptococcus, Staphylococcus, Actinomyces, Fusobacterium, Corynebacterium, Clostridium, Bacteroides, Veilonella and Lactobacillus. In addition, yeast within the genus Candida was also isolated from the plaque samples.
    Matched MeSH terms: Stem Cells
  15. Subhi H, Reza F, Husein A, Nurul AA
    J Conserv Dent, 2018 4 10;21(1):21-25.
    PMID: 29628642 DOI: 10.4103/JCD.JCD_86_17
    Aim: The aim of this study was to evaluate the cytotoxicity effects of experimental gypsum-based biomaterial prepared with various concentrations of chitosan (Gyp-CHT).

    Materials and Methods: The study was performed using cell viability assay for mitochondrial dehydrogenase activity in stem cells from human exfoliated deciduous teeth (SHED), after 1, 2, and 3 days of exposure to the biomaterial extracts of varying concentrations. Differences in mean cell viability values were assessed by one-way analysis of variance, followed by Dunnett T3 post hoc test for multiple comparisons (P < 0.05).

    Results: The cell viability to Gyp-CHT in low extract concentrations was statistically similar to that of the control and different from that of high extract concentrations. Gyp-5% CHT showed the highest percentage of cell viability with 110.92%, 108.56%, and 109.11%. The cell viability showed a tendency toward increment with low extract concentration and no constant effect of CHT on cell viability toward higher or lower.

    Conclusions: Gyp-CHT biomaterial has no cytotoxic effects on the cultured SHED.

    Matched MeSH terms: Stem Cells
  16. Mohd Zain N.S., Tajudin S.S., Mohd Noor S.N.F., Mohamad H.
    MyJurnal
    Thisstudy aim tocharacterize melt-derivedbioactive glass and to determinethe bioactive glass (BG) suitability for dental usagethrough proliferative activity assessment of stem cells from human exfoliated deciduous teeth (SHED)when exposed to bioactive glass conditioned medium. Bioglass 45S5 in mole percentages (46.13% SiO2, 26.91% CaO, 24.35% Na2O and 2.60% P2O5)was synthesizedthrough melt-derived and characterized usingX-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR)to confirm and identify its properties.SHEDwere used to evaluate the biocompatibility of 45S5 by exposing the cells to various concentration of BG-conditioned medium (1-10 mg/ml) using alamarBlue assay. The BG produced has an amorphous structureas shown by XRD analysis. TheSi-O-Si bending, asymmetric Si-O stretching and asymmetricSi-O-Si stretchingbands were observed in the BG structure supporting the presenceof silicate network. For alamarBlue assay, SHED cultured in BG-conditioned medium showed high proliferation rate when subjected to minimal powder content in the DMEM cell culture medium.Hence, it can be concluded that SHED cultured in lower powder content of the BG-conditioned media showedhigh proliferative activity suggesting the potential of the BG for dental usage.
    Matched MeSH terms: Stem Cells
  17. Hari P, Kacharaju KR, Anumala N, Pathakota KR, Avula J
    J Indian Soc Periodontol, 2018 5 18;22(2):133-139.
    PMID: 29769768 DOI: 10.4103/jisp.jisp_320_17
    Context: Biofilms are known for their antimicrobial resistance, and so is the subgingival plaque biofilm, the primary etiologic factor for periodontal infections.

    Aims: The objective of this study is to investigate if the subgingival plaque biofilm resistance can be reduced using doxycycline in the presence of low-intensity electric field (bioelectric effect).

    Settings and Design: The study was an in vitro microbiological study.

    Materials and Methods: Subgingival plaque samples from chronic periodontitis patients were collected to grow subgingival plaque biofilms on hydroxyapatite disks. Hydroxyapatite disks with the plaque biofilms from each patient were divided into four groups: (i) No intervention - control, (ii) current alone - CU; (iii) doxycycline - AB, and (iv) combined treatment - CU + AB. After respective treatments, the disks were anaerobically incubated for 48 h, the biofilm was dispersed and subcultured and colony-forming unit/mL was estimated in all the four groups.

    Statistical Analysis: Statistical analysis was done using Mann-Whitney and Kruskal-Wallis tests for intergroup comparisons. T-test was done to assess the difference in current flow between the groups CU and CU + AB.

    Results: All the three treatment modalities showed antibacterial effect. Application of current alone resulted in reduced bacterial growth than control group. Doxycycline alone resulted in reduction in bacterial counts better than control and current alone groups. The combination treatment showed greatest inhibition of bacterial colonies.

    Conclusion: The ability of doxycycline antibiotic in inhibiting plaque biofilm was significantly enhanced by application of a weak electric field (5 volts for 2 min).

    Matched MeSH terms: Stem Cells
  18. Md Hashim, S.N., Yusof, M.F.H., Alshehadat, S.A., Kannan, T.P., Azlina, A., Suzina, S.A.H., et al.
    MyJurnal
    Angiogenicity is one of the essential components to enable tissue function. It is important to develop a construct that would help in catering oxygen and nutrient to the engineered tissue area. Thus, this study aims to investigate the attachment, spreading and growth of stem cells from human exfoliated deciduous teeth (SHED) on human AM (HAM) with or without vascular endothelial growth factor (VEGF) using scanning electron microscope (SEM), and indirectly see the potential of the HAM as a scaffold to promote angiogenic micro-environment. Since day 1, there were continuous changes of the cell morphology until day 28, SHED treated with VEGF seemed to change its shape from fibroblast-like into a round-shape cell, similar structure as an endotheliallike cell. The structures of filopodia-like were also observed on the treated SHED. SHED without VEGF treatment showed only normal morphological growth on HAM. VEGF is a protein produced to stimulate angiogenesis, and is believed to contribute to the morphological changes of SHED seeded on HAM. This indicates that HAM could be used as a scaffold to allow SHED differentiation into endothelial-like cells with the induction of VEGF.
    Matched MeSH terms: Stem Cells
  19. Amanina Fatinah Kamarudin, Najian Ibrahim, Thirumulu Ponnuraj Kannan, Ahmad Aizat Abdul Aziz
    MyJurnal
    Perivitelline fluid, extracted from the fertilized eggs of horseshoe crabs, has been reported to play a
    vital role in supporting embryogenesis as well as cell proliferation. The present study aims to evaluate the effect
    of PVF on the expression of COL1A1 in human dental pulp stem cells (DPSCs). The cells were grouped into two;
    untreated (control) and treated with a single dose of PVF (0.019 mg/ml). Gene expression was quantified for
    COL1A1 on day 1, 3 and 7 using reverse transcriptase PCR. The expression of COL1A1 on day 3 of treated
    group with PVF was the highest though there was a decline of COL1A1 expression on day 7. Mann Whitney test
    was utilized to determine the significance of COL1A1 expression between treated and untreated groups.
    Significant difference in the expression of COL1A1 was observed between the treated and untreated groups on
    day 3 though there was no significance in the expression on day 7. The present study indicates that PVF may
    have the potential to increase cell proliferation in human DPSCs.
    Matched MeSH terms: Stem Cells
  20. Tan, S.L., Lee, H.Y., Abu Bakar, F., Abdul Karim, M.S., Rukayadi, Y., Mahyudin, N.A.
    MyJurnal
    A total of 85 food handlers participated in this study to determine the hygienic status of their hands in primary schools located in the state of Selangor (Malaysia). Overall findings revealed that the fecal contamination and personal hygiene of the food handlers were well maintained with the range of mean bacterial counts from 0.18 to 0.47 log10 Colony Forming Units/cm2 during the three intervals of hand swabbing (before, during and after) preparation of ready-to-eat foods. However, the general indication of the microbiological quality (Aerobic Plate Count) was out of the standard (range of mean bacterial counts from 1.39 to 1.56 log10 Colony Forming Units/cm2) based on previous literature. This study highlighted that the food handler’s adherence to Good Manufacturing Practice and Sanitation Standard Operating Procedures was insufficient and suggested that attention should be emphasized on their practices at the intervals of school recess: before, during and after the preparation of ready-to-eat foods. In addition, there is also a need in the implementation of an effective HACCP program in Malaysia school foodservice operations.
    Matched MeSH terms: Stem Cells
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links