Displaying publications 281 - 300 of 537 in total

Abstract:
Sort:
  1. He C, Ding N, Li J, Li Y
    Wei Sheng Wu Xue Bao, 2002 Aug;42(4):436-41.
    PMID: 12557549
    A Chicken anemia virus has been isolated from a chicken flock in Harbin of China. The genome of the ivrus was cloned through polymerase chain reaction(PCR) and sequence of the genome was analyzed. The cycle genome is made of 2298 base pairs including three overlapping open reading frames(vp1, vp2, vp3) and a regulative region. Comparing sequence of the genome through BLAST in GenBank, this sequence exhibits 96.9% identity with other genome of CA Vs and least. Multiple alignment of this genome of this virus, 26p4, strain isolated in Germany, strain isolated in Malaysia and Cux-1 found that this sequence exhibits 98.2% (42/2298), 98.2% (42/2298), 96.9% (72/2298) and 97.5% (60/2319) identify with them, respectively. A new CAV strain was isolated and it has better identify with CAV isolated in Europe countries than is Asia country Malaysia. Multiple alignment of VP1, VP2, VP3 of 26p4, strain isolated in Germany, strain isolated in Malaysia, Cux-1 and strain isolated in Harbin of China found the VP2 the most conservative.
    Matched MeSH terms: Chickens/virology*
  2. Lan GQ, Abdullah N, Jalaludin S, Ho YW
    Poult Sci, 2002 Oct;81(10):1522-32.
    PMID: 12412919
    We evaluated the efficacy of supplementation of active Mitsuokella jalaludinii culture (AMJC) on the growth performance, nutrient use, and mineral concentrations in tibia bone and plasma of broiler chickens fed corn-soybean meal diets. Dietary treatments included low-nonphytate P (NPP) feed (containing 0.24% and 0.232% NPP for chicks from 1 to 21 and 22 to 42 d of age, respectively), low-NPP feed added with different levels of AMJC (equivalent to 250, 500, 750, and 1,000 U phytase/kg of feed), and normal-NPP feed (containing 0.46 and 0.354% NPP for chicks from 1 to 21 and 22 to 42 d of age, respectively). Supplementation of AMJC to low-NPP feed increased (P < 0.05) weight gain and feed intake and decreased (P < 0.05) feed:gain ratio of chickens during the whole experiment (Days 1 to 42). Supplementation of AMJC increased (P < 0.05) the AME value, digestibility of DM and CP, and retention of P, Ca, and Cu. Mn retention in broilers was only increased (P < 0.05) by AMJC supplementation from 18 to 20 d of age, and Zn retention was improved (P < 0.05) only at a high level of AMJC (equivalent to 1,000 U phytase/kg of feed) supplementation. Chicks fed low-NPP feed added with AMJC had similar tibia ash percentages as those fed the normal-NPP diet. Generally, supplementing AMJC to low-NPP feed increased (P < 0.05) Ca, decreased significantly (P < 0.05) Mn and Cu, but did not affect Zn and P concentrations in tibia ash. Supplementing AMJC also increased (P < 0.05) plasma P but had no effect on plasma Ca or Mn. Plasma Zn concentration was increased only when a high level of AMJC (equivalent to 1,000 U phytase/kg of feed) was used. In conclusion, AMJC supplementation to low-NPP feed improved growth performance; AME value; digestibility of CP and DM; use of Ca, P, and Cu; and bone mineralization.
    Matched MeSH terms: Chickens/physiology*
  3. Meimandipour A, Hair-Bejo M, Shuhaimi M, Azhar K, Soleimani AF, Rasti B, et al.
    Br Poult Sci, 2010 Feb;51(1):52-9.
    PMID: 20390569 DOI: 10.1080/00071660903394455
    1. An experiment was conducted to determine the effects of supposedly unpleasant physical treatment on broiler performance, small intestinal development and ameliorating role of probiotics. 2. The following treatments were applied from day one: (1) chicks exposed to normal human contact fed basal diet (control); (2) chicks were exposed to unpleasant physical treatment and fed basal diet (UPT-BD); and (3) chicks were exposed to unpleasant physical treatment and fed basal diet supplemented with Lactobacillus (UPT-BDL). Chicks were exposed to UPT from days 1 to 21. Different segments of gastrointestinal tract were sampled at 14, 28, 35 and 42 d of age. 3. Broilers of UPT-BD had lower feed consumption compared with control group at 7 d of age. Overall, UPT-BDL birds showed higher body weight gain (BWG) and better feed conversion ratio (FCR) over the course of the experiment. 4. Birds of UPT-BD had lower concentrations of lactic, propionic and butyric acids in the caecum as compared with other groups at 14 d of age. Acetic acid concentration was profoundly decreased in both UPT groups compared to the control. 5. Duodenal villus height of UPT-BD broilers showed a slight reduction compared to the control and UPT-BDL birds at 14 d of age. Afterwards until day 42, UPT-BDL birds showed the highest villus height among treatments in different parts of the small intestine. 6. The results suggested that, even though UPT did not have significant inhibitory effects on the development of the small intestine and broiler performance, it negatively affected bacterial metabolic end products in the caecum, which could be ameliorated by the addition of Lactobacillus.
    Matched MeSH terms: Chickens/physiology*
  4. Molouki A, Mehrabadi MHF, Bashashati M, Akhijahani MM, Lim SHE, Hajloo SA
    Trop Anim Health Prod, 2019 Jun;51(5):1247-1252.
    PMID: 30689157 DOI: 10.1007/s11250-019-01817-1
    BACKGROUND: Based on our previous work, it was discovered that some Newcastle disease virus (NDV) isolates from backyard poultry between 2011 and 2013 in Iran formed a new separate cluster when phylogenetic analysis based on the complete F gene sequence was carried out. The novel cluster was designated subgenotype VII(L) and published.

    AIM: In the current study, for further validation, we initiated a comprehensive epidemiological study to identify the dominant NDV genotype(s) circulating within the country. Collection of samples was executed between October 2017 and February 2018 from 108 commercial broiler farms which reported clinical signs of respiratory disease in their broilers.

    RESULT: We report that 38 of the farms (> 35%) tested positive for NDV. The complete F gene sequences of seven of the isolates are shown as representative sequences in this study. According to the phylogenetic tree constructed, the recent broiler farm isolates clustered into the newly designated cluster VII(L) together with the older Iranian backyard poultry isolates in our previous work. All the sequences shared the same virulence-associated F cleavage site of 112RRQKR↓F117.

    CONCLUSION: Our phylogenetic analysis suggested that the NDV subgenotype VII(L) may have been derived from subgenotype VIId, and contrary to popular belief, subgenotype VIId may not be the dominant subgenotype in Iran. Tracking of the subgenotype on BLAST suggested that the NDV subgenotype VII(L), although previously unidentified, may have been circulating in this region as an endemic virus for at least a decade. Other NDV genotypes, however, have also been reported in Iran in recent years. Hence, ongoing study is aimed at determining the exact dominant NDV genotypes and subgenotypes in the country. This will be crucial in effective mitigation of outbreaks in Iranian broiler farms.

    Matched MeSH terms: Chickens/virology*
  5. Soleimani AF, Zulkifli I, Hair-Bejo M, Ebrahimi M, Jazayeri SD, Hashemi SR, et al.
    Avian Pathol, 2012;41(4):351-4.
    PMID: 22834548 DOI: 10.1080/03079457.2012.691155
    Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.
    Matched MeSH terms: Chickens*
  6. Faiz NM, Cortes AL, Guy JS, Fletcher OJ, Cimino T, Gimeno IM
    Avian Pathol, 2017 Aug;46(4):376-385.
    PMID: 28151004 DOI: 10.1080/03079457.2017.1290214
    Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is complex and can be divided into two phases: early-MDV-IS associated with cytolytic infection in the lymphoid organs in chickens lacking maternal antibodies against MDV (MAbs) and late-MDV-IS that appears later in the pathogenesis and occurs even in chickens bearing MAbs. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model evaluates late-MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccines against challenge with ILT virus. In the present study, we have used this model to investigate the role of two factors (MDV pathotype and host sex) on the development of late-MDV-IS. Five MDV strains representing three different pathotypes: virulent (vMDV; 617A, GA), very virulent (vvMDV; Md5), and very virulent plus (vv+MDV; 648A, 686), were evaluated. Only vv+ strains were able to induce late-MDV-IS. An immunosuppression rank (IS-rank) was established based on the ability of MDV to reduce the efficacy of chicken embryo origin vaccine (values go from 0 to 100, with 100 being the highest immunosuppressive ability). The IS-rank of the evaluated MDV strains ranged from 5.97 (GA) to 20.8 (617A) in the vMDV strains, 5.97 to 16.24 in the vvMDV strain Md5, and 39.08 to 68.2 in the vv+ strains 648A and 686. In this study both male and female chickens were equally susceptible to MDV-IS by vv+MDV 686. Our findings suggest that late-MDV-IS is a unique feature of vv+ strains.
    Matched MeSH terms: Chickens*
  7. Amin MM, Phillips ND, La T, Robertson ID, Hampson DJ
    Avian Pathol, 2014;43(6):501-5.
    PMID: 25246135 DOI: 10.1080/03079457.2014.966056
    Avian intestinal spirochaetosis causes problems including delayed onset of lay and wet litter in adult chickens, and results from colonization of the caecae/rectum with pathogenic intestinal spirochaetes (genus Brachyspira). Because avian intestinal spirochaetosis has not previously been studied in South East Asia, this investigation was undertaken in Malaysia. Faecal samples were collected from 25 farms and a questionnaire was administered. Brachyspira species were detected by polymerase chain reaction in 198 of 500 (39%) faecal samples from 20 (80%) farms, including 16 (94%) layer and four (50%) breeder farms. Pathogenic Brachyspira pilosicoli was identified in five (29%) layer and two (25%) breeder farms whilst pathogenic Brachyspira intermedia was detected in nine (53%) layer and one (12.5%) of the breeder farms. Twelve (80%) layer farms had egg production problems and 11 (92%) were positive for Brachyspira: three (25%) for B. pilosicoli and six (50%) for B. intermedia. Of three breeder farms with egg production problems, one was colonized with B. pilosicoli. Three of ten layer farms with wet litter were positive for B. pilosicoli and six for B. intermedia. Of four breeder farms with wet litter, one was colonized with B. pilosicoli and one with B. intermedia. No significant associations were found between colonization and reduced egg production or wet litter, perhaps because so many flocks were colonized. A significant association (P = 0.041) occurred between a high prevalence of colonization and faecal staining of eggs. There were significant positive associations between open-sided housing (P = 0.006), and flocks aged >40 weeks (P < 0.001) and colonization by pathogenic species.
    Matched MeSH terms: Chickens*
  8. Craig MI, Rimondi A, Delamer M, Sansalone P, König G, Vagnozzi A, et al.
    Avian Dis, 2009 Sep;53(3):331-5.
    PMID: 19848068
    Chicken infectious anemia virus (CAV) is a worldwide-distributed infectious agent that affects commercial poultry. Although this agent was first detected in Argentina in 1994, no further studies on CAV in this country were reported after that. The recent increased occurrence of clinical cases of immunosuppression that could be caused by CAV has prompted this study. Our results confirmed that CAV is still circulating in commercial flocks in Argentina. Phylogenetic analysis focusing on the VP1 nucleotide sequence showed that all Argentinean isolates grouped together in a cluster, sharing a high similarity (> 97%) with genotype B reference strains. However, Argentinean isolates were distantly related to other strains commonly used for vaccination in this country, such as Del-Ros and Cux-1. Sequence analysis of predicted VP1 peptides showed that most of the Argentinean isolates have a glutamine residue at positions 139 and 144, suggesting that these isolates might have a reduced spread in cell culture compared with Cux-1. In addition, a particular amino acid substitution at position 290 is present in all studied Argentinean isolates, as well as in several VP1 sequences from Malaysia, Australia, and Japan isolates. Our results indicate that it is possible to typify CAV strains by comparison of VPI nucleotide sequences alone because the same tree topology was obtained when using the whole genome sequence. The molecular analysis of native strains sheds light into the epidemiology of CAV in Argentinean flocks. In addition, this analysis could be considered in future control strategies focused not only on breeders but on broilers and layer flocks.
    Matched MeSH terms: Chickens*; Chicken anemia virus/genetics*
  9. Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK
    Avian Dis, 2019 06 01;63(2):275-288.
    PMID: 31251527 DOI: 10.1637/11936-072418-Reg.1
    Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
    Matched MeSH terms: Chickens*
  10. Nurulfiza I, Hair-Bejo M, Omar AR, Aini I
    J Vet Diagn Invest, 2011 Mar;23(2):320-4.
    PMID: 21398455
    The immunochromatographic assay is an alternative method for simple and rapid detection of Infectious bursal disease virus (IBDV) in chickens using colloidal gold-antibody conjugate. The whole-virus antigen of IBDV (UPM04190 isolate) and the high-affinity polyclonal antibodies directed against IBDV were blotted onto nitrocellulose membranes for test and control lines, respectively. Evaluation of the strip was performed using serum samples from experimentally and naturally infected chickens. The results showed that the test strip was more sensitive than the commercial enzyme-linked immunosorbent assay (ELISA) because it could detect a dilution factor up to 120,000 (250 ELISA units) for positive samples. It was also specific, in that it detected IBDV antibodies and did not cross-react with antibodies to other chicken viruses. The method was rapid (2 min) in both clinical and field environments with samples needing only a minimum amount (50 µl) of blood to produce an acceptable detection signal. The pen-site test strip proved successful in monitoring the immune status of chickens against the IBDV infection.
    Matched MeSH terms: Chickens*
  11. Zakaria Z, Hassan L, Sharif Z, Ahmad N, Ali RM, Husin SA, et al.
    BMC Vet Res, 2020 Oct 17;16(1):393.
    PMID: 33069231 DOI: 10.1186/s12917-020-02605-y
    BACKGROUND: Salmonella is a very important foodborne pathogen causing illness in humans. The emergence of drug-resistant strains also constitutes a serious worry to global health and livestock productivity. This study investigated Salmonella isolates from chicken and chicken meat products using the phenotypic antimicrobial screening as well as the molecular characteristics of Salmonella isolates. Upon serotyping of the isolates, the antimicrobial susceptibility profiling using a panel of 9 commonly used antimicrobials was done. Subsequently, the molecular profiles of all the isolates were further determined using Pulsed Field Gel Electrophoresis (PFGE) and the Whole Genome Multi-Locus Sequence Type (wgMLST) analysis in order to obtain the sequence types.

    RESULTS: The PFGE data was input into FPQuest software, and the dendrogram generated was studied for possible genetic relatedness among the isolates. All the isolates were found to belong to the Salmonella Enteritidis serotype with notable resistance to tetracycline, gentamycin, streptomycin, and sulfadimidine. The S. Enteritidis isolates tested predominantly subtyped into the ST11 and ST1925, which was found to be a single cell variant of ST11. The STs were found to occur in chicken meats, foods, and live chicken cloacal swabs, which may indicate the persistence of the bacteria in multiple foci.

    CONCLUSION: The data demonstrate the presence of S. Enteritidis among chickens, indicating its preference and reservoir status for enteric Salmonella pathogens.

    Matched MeSH terms: Chickens/microbiology*
  12. Getachew YM, Hassan L, Zakaria Z, Saleha AA, Kamaruddin MI, Che Zalina MZ
    Trop Biomed, 2009 Dec;26(3):280-8.
    PMID: 20237442 MyJurnal
    Vancomycin-resistant Enterococcus (VRE) is an emerging nosocomial pathogen in humans. The use of antibiotics in human therapy and in the production of food animals has been incriminated in the emergence of this organism. The present study describes the distribution of VRE species, the vancomycin-resistant genes detected, the vancomycin resistance pattern observed, and the genetic diversity of the isolates found in live broiler chickens in Malaysia. Overall 140 VRE were isolated with species comprising Enterococcus faecalis (48%), Enterococcus faecium (25.7%), Enterococcus gallinarum (12.1%), Enterococcus casseliflavus (1.4%) and other Enterococcus species (12.8%). Vancomycin resistance gene vanA and intrinsic genes vanC1 and vanC2/3 were detected in the study population. VanA was detected in 15 (63.9%) of E. faecium, 23 (22.4%) of E. faecalis and in 3 (17.6%) E. gallinarum isolates. E-test was conducted on randomly selected 41 of the isolates and the minimum inhibition concentration (MIC) of vancomycin for five (11.9%) of tested isolates is more than 256 μg/ml. Genotypic analysis using random amplified polymorphic DNA (RAPD) showed genetic diversity within the Enterococcus species.
    Matched MeSH terms: Chickens/microbiology*
  13. Sabarudin NS, Tan SW, Phang YF, Omar AR
    J Vet Sci, 2021 Jul;22(4):e42.
    PMID: 34313038 DOI: 10.4142/jvs.2021.22.e42
    BACKGROUND: Inclusion body hepatitis (IBH) is an economically important viral disease primarily affecting broiler and breeder chickens. All 12 serotypes of fowl adenovirus (FAdV) can cause IBH.

    OBJECTIVES: To characterize FAdV isolates based on phylogenetic analysis, and to study the pathogenicity of FAdV-8b in specific-pathogen-free (SPF) chickens following virus inoculation via oral and intramuscular (IM) routes.

    METHODS: Suspected organ samples were subjected to virus isolation and polymerase chain reaction (PCR) for FAdV detection. Hexon gene sequencing and phylogenetic analysis were performed on FAdV-positive samples for serotype identification. One FAdV-8b isolate, UPM/FAdV/420/2017, was selected for fiber gene characterization and pathogenicity study and was inoculated in SPF chickens via oral and IM routes.

    RESULTS: The hexon gene phylogenetic analysis revealed that all isolates belonged to FAdV-8b. The fiber gene-based phylogenetic analysis of isolate UPM/FAdV/420/2017 supported the grouping of that isolate into FAdV species E. Pathogenicity study revealed that, chickens infected with UPM/FAdV/420/2017 via the IM route had higher clinical score values, higher percent mortality, higher degree of the liver lesions, higher antibody response (p < 0.05), and higher virus shedding amounts (p < 0.05) than those infected via the oral route. The highest virus copy numbers were detected in liver and gizzard.

    CONCLUSIONS: FAdV-8b is the dominant FAdV serotype in Malaysia, and pathogenicity study of the FAdV-8b isolate UPM/FAdV/420/2017 indicated its ability to induce IBH in young SPF chickens when infected via oral or IM routes.

    Matched MeSH terms: Chickens*
  14. Jahromi MF, Liang JB, Ebrahimi R, Soleimani AF, Rezaeizadeh A, Abdullah N, et al.
    Animal, 2017 May;11(5):755-761.
    PMID: 27804905 DOI: 10.1017/S175173111600224X
    To alleviate adverse effects of heavy metal toxicity, diverse range of removing methods have been suggested, that is usage of algae, agricultural by-products and microorganisms. Here, we investigated lead (Pb) biosorption efficacy by two lactic acid bacteria species (LABs) in broiler chickens. In an in vitro study, Pb was added to culture medium of LABs (Lactobacillus pentosus ITA23 and Lactobacillus acidipiscis ITA44) in the form of lead acetate. Results showed that these LABs were able to absorb more than 90% of Pb from the culture medium. In follow-up in vivo study, LABs mixture was added to diet of broiler chickens contained lead acetate (200 mg/kg). Pb exposure significantly increased lipid peroxidation and decreased antioxidant activity in liver. The changes were recovered back to normal level upon LABs supplementation. Moreover, addition of LABs eliminated the liver tissue lesion and the suppressed performance in Pb-exposed chicks. Analysis of liver and serum samples indicated 48% and 28% reduction in Pb accumulation, respectively. In conclusion, results of this study showed that L. pentosus ITA23 and L. acidipiscis ITA44 effectively biosorb and expel dietary Pb from gastrointestinal tract of chickens.
    Matched MeSH terms: Chickens/metabolism*
  15. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2018 Aug 24;14(1):249.
    PMID: 30143038 DOI: 10.1186/s12917-018-1578-x
    BACKGROUND: Selenium (Se) and vitamin E (Vit E) can act synergistically and affect biological processes, mainly antioxidant and immunity. The use of excess dietary Vit E and Se in animals' feed could enhance immune response and induce disease resistance. Moreover, different Se sources may provide different alterations in the immune system. Accordingly, the aim of the current study was to assess the impact of dietary supplementation of Vit E, inorganic Se (sodium selenite, SS), bacterial organic Se of ADS18, and their different combinations on the plasma immunoglobulins, ceacum microbial population, and splenic cytokines gene expression in broiler chickens.

    RESULTS: Present results showed that, Se and Vit E synergistic effect was clear in plasma IgM level at day 42 and in splenic cytokines expression (TNF-α, IFN-γ, IL-2, IL-10). The combination of 0.3 mg/kg ADS18-Se with 100 mg/kg Vit E showed the highest IgM level compared to Vit E- SS complex. The combination of either SS or ADS18-Se with Vit E had no significant effect on IFN- γ and IL-10 compared to Vit E alone, while Vit E alone showed the significantly lowest TNF-α compared to the Se combinations. Supplementation of 100 mg/kg Vit E had no effect on microbial population except a slight reduction in Salmonella spp. The main effect of Se sources was that both sources increased the day 42 IgA and IgG level compared to NS group. ADS18-Se modulate the caecum microbial population via enhancing beneficial bacteria and suppressing the E-coli and Salmonella spp. while both Se and Vit E factors had no effect on lymphoid organ weights.

    CONCLUSIONS: The inclusion of 100 mg/kg Vit E with 0.3 mg/kg ADS18-Se, effectively could support the immune system through regulation of some cytokines expression and immunoglobulin levels more than using ADS18-Se alone, while no difference was observed between using SS alone or combined with Vit E.

    Matched MeSH terms: Chickens/immunology*
  16. Chen WL, Tang SGH, Jahromi MF, Candyrine SCL, Idrus Z, Abdullah N, et al.
    Poult Sci, 2019 Jan 01;98(1):56-68.
    PMID: 30137571 DOI: 10.3382/ps/pey366
    The potential use of palm kernel expeller (PKE) as an alternative energy source in broiler diets is limited by the high fiber content. Although enzymatic treatment could alleviate the fiber component and increase the nutritive value of PKE, this apparent improvement is not reflected in the growth response of birds fed with the treated-PKE. As chicken's ceca are the most heavily populated with microflora within their gastrointestinal tract, it was hypothesized that any modulation of the intestinal environment by dietary treatments should be reflected by the composition and activities of the cecal microflora. There is a correlation between cecal microbiota composition and the efficiency of the host to extract energy from the diet and to deposit that energy into improved feed conversion ratio. At present, little is known about the changes on cecal microflora of broilers fed with PKE diets. Hence, this study was designed to assess the effects of feeding different forms of PKE; namely untreated PKE (UPKE), enzyme-treated PKE (EPKE), and oligosaccharides extracted from PKE (OligoPKE), on the cecal microbiota of broiler chickens at 14 d old (day 14) and 28 d old (day 28) using 16S rRNA gene high-throughput next-generation sequencing method. The results showed that temporal changes in cecal microbiota of broiler chickens were evident on day 14 and day 28. The relative abundance of phylum Firmicutes, known to be involved in nutrient uptake and absorption in both age groups was higher in the UPKE as compared to EPKE group. In addition, supplementation of OligoPKE increased (P < 0.05) the relative abundance of Lactobacillus on both D14 and D28, signifying its effect as prebiotics in enhancing growth of indigenous Lactobacillus. Our results showed that cecal microbiota was significantly modulated by dietary treatments and that the lower relative abundance of phylum Firmicutes in chickens fed with EPKE could be a reason why broiler chickens fed with EPKE of higher metabolizable energy (ME) content did not show improvement in their growth performance.
    Matched MeSH terms: Chickens/microbiology*
  17. Khairil Mokhtar NF, El Sheikha AF, Azmi NI, Mustafa S
    J Sci Food Agric, 2020 Mar 15;100(4):1687-1693.
    PMID: 31803942 DOI: 10.1002/jsfa.10183
    BACKGROUND: The growth of halal food consumption worldwide has resulted in an increase in the request for halal authentication. DNA-based detection using powerful real-time polymerase chain reaction (PCR) technique has been shown to be highly specific and sensitive authentication tool. The efficient DNA extraction method in terms of quality and quantity is a backbone step to obtain successful real-time PCR assays. In this study, different DNA extraction methods using three lysis buffers were evaluated and developed to recommend a much more efficient method as well as achieve a successful detection using real-time PCR.

    RESULTS: The lysis buffer 2 (LB2) has been shown to be the best lysis buffer for DNA extraction from both raw and processed meat samples comparing to other lysis buffers tested. Hence, the LB2 has been found to be ideal to detect meat and porcine DNAs by real-time PCR using pairs of porcine specific primers and universal primers which amplified at 119 bp fragment and 93 bp fragment, respectively. This assay allows detection as low as 0.0001 ng of DNA. Higher efficiency and sensitivity of real-time PCR via a simplified DNA extraction method using LB2 have been observed, as well as a reproducible and high correlation coefficient (R2  = 0.9979) based on the regression analysis of the standard curve have been obtained.

    CONCLUSION: This study has established a fast, simple, inexpensive and efficient DNA extraction method that is feasible for raw and processed meat products. This extraction technique allows an accurate DNA detection by real-time PCR and can also be implemented to assist the halal authentication of various meat-based products available in the market. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Chickens/genetics
  18. Shahzad MI, Ashraf H, Aslam A, Parveen S, Kamran Z, Naz N, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2751-2756.
    PMID: 31969311
    Avian influenza or bird flu is a common problem of domestic and wild birds. Some of its strains are able to cross the species barrier and cause infection in various members of class Mammalia. In view of relatively lesser efficacy of vaccines, antiviral therapies remain the only choice for the sustenance of mammals acquiring this highly devastating infection. This study is based on the evaluation of antiviral potential of methanol extracts of eleven selected Cholistani plants. The methanol extracts were prepared by using dried plants material followed by concentrating in a rotary evaporator and finally air dried before dissolving in nanopure water. The suspension was filter sterilized and subjected to in ovo antiviral assays. The allantoic fluids were harvested and haemagglutinin (HA) titers were determined. Among the eleven plants evaluated all methanol extracts were found effective against AIV H9N2 except S. baryosma extract. The medicinal plants O. compressa, N. procumbens, and S. surattense were found to be more effective than others and they retained HA titers at 0 after challenge. The next in order were extracts of O. esculentum, H. salicornicum and S. fruticosa which kept HA titers at 4, 8 and 16 respectively. The extracts of H. recurvum, P. antidotale, S. icolados and A. aspera were found less effective than above mentioned plant extracts and they kept the HA titers at 32, 64, 128 and 256 respectively. These results led us to conclude that the medicinal plants of Cholistan region are a rich source of antiviral agent(s) against AIV H9N2 and could be a source of cost effective alternate therapeutics.
    Matched MeSH terms: Chickens/virology
  19. Aklilu E, Harun A, Singh KKB, Ibrahim S, Kamaruzzaman NF
    Biomed Res Int, 2021;2021:5596502.
    PMID: 34660793 DOI: 10.1155/2021/5596502
    Carbapenem-resistant Enterobacteriaceae (CRE) has been a public health risk in several countries, and recent reports indicate the emergence of CRE in food animals. This study was conducted to investigate the occurrence, resistance patterns, and phylogenetic diversity of carbapenem-resistant E. coli (CREC) from chicken. Routine bacteriology, PCR detection of E. coli species, multiplex PCR to detect carbapenemase-encoding genes, and phylogeny of CRE E. coli were conducted. The results show that 24.36% (19/78) were identified as CREC based on the phenotypic identifications of which 17 were positive for the tested carbapenemases genes. The majority, 57.99% (11/19), of the isolates harbored multiple carbapenemase genes. Four isolates harbored all bla NDM, bla OXA, and bla IMP, and five and two different isolates harbored bla NDM and bla OXA and bla OXA and bla IMP, respectively. The meropenem, imipenem, and ertapenem MIC values for the isolates ranged from 2 μg/mL to ≥256 μg/mL. Phylogenetic grouping showed that the CREC isolates belonged to five different groups: groups A, B1, C, D, and unknown. The detection of CREC in this study shows that it has become an emerging problem in farm animals, particularly, in poultry farms. This also implies the potential public health risks posed by CRE from chicken to the consumers.
    Matched MeSH terms: Chickens/microbiology*
  20. Najafi P, Zulkifli I, Soleimani AF
    Poult Sci, 2018 Apr 01;97(4):1441-1447.
    PMID: 29462352 DOI: 10.3382/ps/pex364
    The aim of the current study was to elucidate whether inhibition of corticosterone (CORT) synthesis could modify stress response to feed deprivation and its possible interactions with feed restriction in the neonatal period in broiler chickens. Equal numbers of broiler chicks were subjected to either 60% feed restriction (60FR) or ad libitum (AL) on d 4, 5, and 6. On day 7, blood CORT, acute phase proteins (APP), interleukin-6 (IL-6) levels, and brain heat shock protein 70 (HSP70) expression were determined. On d 35, chickens in each early age feeding regimen were subjected to one of the following treatments: (i) ad libitum feeding (ALF), (ii) 24 h feed deprivation (SFR), or (iii) 24 h feed deprivation with intramuscular injection of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) at 100 mg/kg BW (SFR+DDT). The effect of SFR on CORT, APP, IL-6, and HSP 70 were determined on d 36. The results showed that subjecting chicks to 60FR significantly elevated CORT and brain HSP70 concentration compared to the AL group on d 7. The early feeding regimen had no significant effect on CORT, alpha-1 acid glycoprotein (AGP), ovotransferrin (OVT), ceruoplasmin (CP), IL-6, or brain HSP70 on d 36. The CORT, AGP, OVT, CP, IL-6, and brain HSP70 expression of SFR birds following 24 h of feed deprivation (d 36) were significantly higher than their ALF and SFR+DDT counterparts. Both ALF and SFR+DDT birds had similar values. Stress attributed to feed deprivation without concurrent increase in CORT had a negligible effect on serum levels of APP and IL-6 and brain HSP70 expression.
    Matched MeSH terms: Chickens/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links