Displaying publications 281 - 300 of 873 in total

Abstract:
Sort:
  1. Chuprom J, Kidsin K, Sangkanu S, Nissapatorn V, Wiart C, de Lourdes Pereira M, et al.
    Vet Res Commun, 2023 Jun;47(2):523-538.
    PMID: 36260188 DOI: 10.1007/s11259-022-09999-0
    This study aimed to assess antibacterial activity of Knema retusa wood extract (KRe) against antibiotic resistant staphylococci which are causative agents of bovine mastitis. From 75 cases of intramammary infections in dairy cows, 66 staphylococcal isolates were collected, including 11 Staphylococcus aureus isolates (17%) and 55 coagulase-negative staphylococci (83%). Sixty isolates (91%) formed strong biofilms. KRe had minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) against the isolates ranging 32-256 ug/mL and 64-512 ug/mL, respectively. Two-hour KRe exposures at 4×MIC, viabilities of S. aureus and S. haemolyticus decreased by 3 log10 compared to the control. Scanning EM (SEM) showed that KRe disrupted the bacterial cells of both species. KRe at 1/16×MIC significantly inhibited biofilm formation (P 
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Sasikumar G, Subramani A, Tamilarasan R, Rajesh P, Sasikumar P, Albukhaty S, et al.
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049692 DOI: 10.3390/molecules28072931
    A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  4. Yap CH, Ramle AQ, Lim SK, Rames A, Tay ST, Chin SP, et al.
    Bioorg Med Chem, 2023 Nov 15;95:117485.
    PMID: 37812886 DOI: 10.1016/j.bmc.2023.117485
    Staphylococcus aureus is a highly adaptable opportunistic pathogen that can form biofilms and generate persister cells, leading to life-threatening infections that are difficult to treat with antibiotics alone. Therefore, there is a need for an effective S. aureus biofilm inhibitor to combat this public health threat. In this study, a small library of indolenine-substituted pyrazoles and pyrimido[1,2-b]indazole derivatives were synthesised, of which the hit compound exhibited promising antibiofilm activities against methicillin-susceptible S. aureus (MSSA ATCC 29213) and methicillin-resistant S. aureus (MRSA ATCC 33591) at concentrations significantly lower than the planktonic growth inhibition. The hit compound could prevent biofilm formation and eradicate mature biofilms of MSSA and MRSA, with a minimum biofilm inhibitory concentration (MBIC50) value as low as 1.56 µg/mL and a minimum biofilm eradication concentration (MBEC50) value as low as 6.25 µg/mL. The minimum inhibitory concentration (MIC) values of the hit compound against MSSA and MRSA were 50 µg/mL and 25 µg/mL, respectively, while the minimum bactericidal concentration (MBC) values against MSSA and MRSA were > 100 µg/mL. Preliminary structure-activity relationship analysis reveals that the fused benzene ring and COOH group of the hit compound are crucial for the antibiofilm activity. Additionally, the compound was not cytotoxic to human alveolar A549 cells, thus highlighting its potential as a suitable candidate for further development as a S. aureus biofilm inhibitor.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  5. Kadir NHA, Murugan N, Khan AA, Sandrasegaran A, Khan AU, Alam M
    Microsc Res Tech, 2024 Mar;87(3):602-615.
    PMID: 38018343 DOI: 10.1002/jemt.24437
    This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 μm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 μg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 μg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Hairil Anuar AH, Abd Ghafar SA, Hanafiah RM, Lim V, Mohd Pazli NFA
    Int J Nanomedicine, 2024;19:1339-1350.
    PMID: 38348172 DOI: 10.2147/IJN.S431499
    INTRODUCTION: This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol).

    METHODS: AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV-visible spectroscopy (UV-Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay.

    RESULTS: The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV-visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Indumathi T, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, Mathanmohun M
    J Basic Microbiol, 2024 Feb;64(2):e2300505.
    PMID: 37988658 DOI: 10.1002/jobm.202300505
    The current investigation focuses on synthesizing copper oxide (CuO)-titanium oxide (TiO2 )-chitosan-farnesol nanocomposites with potential antibacterial, antifungal, and anticancer properties against Melanoma cells (melanoma cells [SK-MEL-3]). The nanocomposites were synthesized using the standard acetic acid method and subsequently characterized using an X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results from the antibacterial tests against Streptococcus pneumoniae and Stapylococcus aureus demonstrated significant antibacterial efficacy. Additionally, the antifungal studies using Candida albicans through the agar diffusion method displayed a considerable antifungal effect. For evaluating the anticancer activity, various assays such as MTT assay, acridine orange/ethidium bromide dual staining assay, reactive oxygen species (ROS) generation assay, and mitochondrial membrane potential (MMP) analysis were conducted on SK-MEL-3 cells. The nanocomposites exhibited the ability to induce ROS generation, decrease MMP levels, and trigger apoptosis in SK-MEL-3 cells. Collectively, the findings demonstrated a distinct pattern for the synthesized bimetallic nanocomposites. Furthermore, these nanocomposites also displayed significant (p 
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Salawudeen A, Raji YE, Jibo GG, Desa MNM, Neoh HM, Masri SN, et al.
    Antimicrob Resist Infect Control, 2023 Dec 07;12(1):142.
    PMID: 38062531 DOI: 10.1186/s13756-023-01346-5
    The rising prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase-resistant (ESBL) Klebsiella pneumoniae (K. pneumoniae) is an important global public health challenge. This threat is even more pertinent in clinical settings. Morbidity and mortality associated with this condition are alarming particularly in the developing regions of the world. A comprehensive evaluation of the epidemiology of this phenomenon will assist towards the global effort of reducing its burden. So, this systematic review and meta-analysis was conducted to evaluate the epidemiology of MDR K. pneumoniae in South-Eastern Asia (SEA). The study was done under the PRISMA guidelines and was preceded by the development of a priori protocol. The protocol was then registered in PROSPERO-the public registry for systematic reviews. Seven important outcomes which include the assessment of the overall MDR K. pneumoniae prevalence were designed to be evaluated. A literature search was carried out in five selected electronic databases and 4389 were screened. Of these articles, 21 studies that met the eligibility criteria were included in the review. Relevant data were extracted from the included studies. By conducting a quality effect meta-analysis, the pooled prevalence for MDR and ESBL K. pneumoniae in SEA was estimated at 55% (CI 9-96) and 27% (CI 32-100) respectively. The review also identified ESBL genes types of allodemic situations occurring mostly in respiratory tract infections. The high prevalence of MDR and ESBL K. pneumoniae in this subregion is highly significant and of both public health and clinical relevance. Overall, the findings of this review will assist in the effective prevention and control of this threat in SEA.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  9. Ravikumar OV, Marunganathan V, Kumar MSK, Mohan M, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Feb 24;51(1):352.
    PMID: 38400866 DOI: 10.1007/s11033-024-09289-9
    BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds.

    METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.

    RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.

    CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Shahimi S, Elias A, Abd Mutalib S, Salami M, Fauzi F, Mohd Zaini NA, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(32):44002-44013.
    PMID: 33846919 DOI: 10.1007/s11356-021-13665-4
    A total of 24 strains of Vibrio alginolyticus were isolated from cockles (Anadara granosa) and identified for VibA and gyrB genes. All V. alginolyticus isolates were then tested against nine different antibiotics. In this study, the highest percentage of antibiotic resistance was obtained against penicillin (37.50%), followed by ampicillin, vancomycin (12.50%) and erythromycin (8.33%). All of V. alginolyticus isolates were susceptible against streptomycin, kanamycin, tetracycline, chloramphenicol and sulfamethoxazole. Polymerase chain reaction (PCR) assay has confirmed the presence of four antibiotic resistance genes of penicillin (pbp2a), ampicillin (blaOXA), erythromycin (ermB) and vancomycin (vanB). Out of 24 V. alginolyticus isolates, 2 isolates possessed the tdh-related hemolysin (trh) (strains VA15 and VA16) and none for the thermostable direct hemolysin (tdh) gene. Both strains of the tdh-related hemolysin (trh) were susceptible to all antibiotics tested. The multiple antibiotic resistance (MAR) index ranging between 0.2 and 0.3 with 5 antibiograms (A1-A5) was observed. Combination of enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and antibiotic resistance indicated 18 genome types which showed genetic heterogeneity of those V. alginolyticus isolates. The results demonstrated the presence of V. alginolyticus strain found in cockles can be a potential risk to consumers and can contribute to the deterioration of human health in the study area. Thus, it is essential for local authority to provide the preventive measures in ensuring the cockles are safe for consumption.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Shashkova T, Popenko A, Tyakht A, Peskov K, Kosinsky Y, Bogolubsky L, et al.
    PLoS One, 2016;11(2):e0148386.
    PMID: 26894828 DOI: 10.1371/journal.pone.0148386
    BACKGROUND: Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes.

    METHODOLOGY/PRINCIPAL FINDINGS: In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.

    CONCLUSION/SIGNIFICANCE: The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  12. Kamaruzzaman NF, Kendall S, Good L
    Br J Pharmacol, 2017 Jul;174(14):2225-2236.
    PMID: 27925153 DOI: 10.1111/bph.13664
    Infectious diseases continue to threaten human and animal health and welfare globally, impacting millions of lives and causing substantial economic loss. The use of antibacterials has been only partially successful in reducing disease impact. Bacterial cells are inherently resilient, and the therapy challenge is increased by the development of antibacterial resistance, the formation of biofilms and the ability of certain clinically important pathogens to invade and localize within host cells. Invasion into host cells provides protection from both antibacterials and the host immune system. Poor delivery of antibacterials into host cells causes inadequate bacterial clearance, resulting in chronic and unresolved infections. In this review, we discuss the challenges associated with existing antibacterial therapies with a focus on intracellular pathogens. We consider the requirements for successful treatment of intracellular infections and novel platforms currently under development. Finally, we discuss novel strategies to improve drug penetration into host cells. As an example, we discuss our recent demonstration that the cell penetrating cationic polymer polyhexamethylene biguanide has antibacterial activity against intracellular Staphylococcus aureus.

    LINKED ARTICLES: This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  13. Ramli S, Radu S, Shaari K, Rukayadi Y
    Biomed Res Int, 2017;2017:9024246.
    PMID: 29410966 DOI: 10.1155/2017/9024246
    The aim of this study was to determine antibacterial activity of S. polyanthum L. (salam) leaves extract foodborne pathogens. All the foodborne pathogens were inhibited after treating with extract in disk diffusion test with range 6.67 ± 0.58-9.67 ± 0.58 mm of inhibition zone. The range of MIC values was between 0.63 and 1.25 mg/mL whereas MBC values were in the range 0.63 mg/mL to 2.50 mg/mL. In time-kill curve, L. monocytogenes and P. aeruginosa were found completely killed after exposing to extract in 1 h incubation at 4x MIC. Four hours had been taken to completely kill E. coli, S. aureus, V. cholerae, and V. parahaemolyticus at 4x MIC. However, the population of K. pneumoniae, P. mirabilis, and S. typhimurium only reduced to 3 log CFU/mL. The treated cell showed cell rupture and leakage of the cell cytoplasm in SEM observation. The significant reduction of natural microflora in grapes fruit was started at 0.50% of extract at 5 min and this concentration also was parallel to sensory attributes acceptability where application of extract was accepted by the panellists until 5%. In conclusion, S. polyanthum extract exhibits antimicrobial activities and thus might be developed as natural sanitizer for washing raw food materials.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  14. Karunanidhi A, Ghaznavi-Rad E, Hamat RA, Pichika MR, Lung LTT, Mohd Fauzi F, et al.
    Biomed Res Int, 2018;2018:9845075.
    PMID: 30105271 DOI: 10.1155/2018/9845075
    The present study assessed the in vitro antibacterial and antibiofilm potential of hexane (ASHE) and dichloromethane (ASDE) extracts of Allium stipitatum (Persian shallot) against planktonic cells and biofilm structures of clinically significant antibiotic resistant pathogens, with a special emphasis on methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and emerging pathogens, Acinetobacter baumannii and Stenotrophomonas maltophilia. Antibacterial activities were determined through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill kinetics, and electron microscopy. Antibiofilm activity was assessed by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay and by confocal laser scanning microscopy (CLSM). The zone of inhibition ranged from 13 to 33 mm, while the MICs and MBCs ranged from 16 to 1024 μg mL-1. Both ASHE and ASDE completely eradicated overnight cultures of the test microorganisms, including antibiotic resistant strains. Time-kill studies showed that the extracts were strongly bactericidal against planktonic cultures of S. aureus, MRSA, Acinetobacter baumannii, and S. maltophilia as early as 4 hours postinoculation (hpi). ASHE and ASDE were shown to inhibit preformed biofilms of the four biofilm phenotypes tested. Our results demonstrate the potential therapeutic application of ASHE and ASDE to inhibit the growth of gram-positive and gram-negative biofilms of clinical significance and warrant further investigation of the potential of A. stipitatum bulbs against biofilm-related drug resistance.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  15. Fayyaz Z, Farrukh MA, Ul-Hamid A, Chong KK
    Microsc Res Tech, 2024 May;87(5):957-976.
    PMID: 38174385 DOI: 10.1002/jemt.24487
    The present exploration demonstrates the efficient, sustainable, cost-effective, and environment-friendly green approach for the synthesis of silver (Ag)-doped copper oxide (CuO) embedded with reduced graphene oxide (rGO) nanocomposite using the green one-pot method and the green deposition method. Leaf extracts of Ficus carica and Azadirachta indica were used for both methods as reducing and capping agents. The effect of methodology and plant extract was analyzed through different characterization techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). The lowest band gap of 3.0 eV was observed for the Ag/CuO/rGO prepared by the green one-pot method using F. carica. The reduction of graphene oxide (GO) and the formation of metal oxide was confirmed through functional group detection using FT-IR. Calculation of thermodynamic parameters showed that all reactions involved were nonspontaneous and endothermic which shows the stability of nanocomposites. XRD studies revealed the crystallinity, phase purity and small average crystallite size of 32.67 nm. SEM images disclosed that the morphology of the nanocomposites was spherical with agglomeration and rough texture. The particle size of the nanocomposites calculated through HRTEM was found in agreement with the XRD results. The numerous properties of the synthesized nanocomposites enhanced their potential against the degradation of methylene blue, rhodamine B, and ciprofloxacin. The highest percentage degradation of Ag/CuO/rGO was found to be 97%, synthesized using the green one-pot method with F. carica against ciprofloxacin, which might be due to the lowest band gap, delayed electron-hole pair recombination, and large surface area available. The nanocomposites were also tested against the Gram-positive and Gram-negative bacteria. RESEARCH HIGHLIGHTS: Facile synthesis of Ag/CuO/rGO nanocomposite using a green one-pot method and the green deposition method. The lowest band gap of 3.0 eV was observed for nanocomposite prepared by a green one-pot method using Ficus carica. Least average crystallite size of 32.67 nm was found for nanocomposite prepared by a green one-pot method using F. carica. Highest antibacterial and catalytic activity (97%) was obtained against ciprofloxacin with nanocomposite prepared through green one-pot method using F. carica. A mechanism of green synthesis is proposed.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Munisparan T, Yang ECY, Paramasivam R, Dahlan NA, Pushpamalar J
    IET Nanobiotechnol, 2018 Jun;12(4):429-435.
    PMID: 29768225 DOI: 10.1049/iet-nbt.2017.0186
    Ultrafine titanium dioxide (TiO2) nanowires were synthesised using a hydrothermal method with different volumes of ethylene glycol (EG) and annealing temperatures. It shows that sodium titanate nanowires synthesised using 5 and 10 ml EG, which annealed at 400°C produced TiO2 nanowires that correspond to a photochemically active phase, which is anatase. The influences of annealing temperatures (400-600°C) on the morphological arrangement of TiO2 nanowires were evident in the field emission scanning electron microscopy. The annealing temperature of 500°C led to agglomeration, which formed a mixture of TiO2 nanoparticles and nanowires. High thermal stability of TiO2 nanowires revealed by thermogravimetric analysis and Fourier transform infrared spectroscopy spectrum showed the presence of the Ti-O-Ti vibrations as evidenced due to TiO2 lattices. An antibacterial study using TiO2 nanowires toward Escherichia coli and Klebsiella pneumoniae showed large zones of inhibition that indicated susceptibility of the microbe toward TiO2. Growth kinetic analysis shows that addition of TiO2 has reduced optical density (OD) suggesting an inhibition of the growth of bacteria. These results indicate TiO2 nanowires can be effectively used as an antimicrobial agent against gram-bacteria. The TiO2 nanowires could be exploited in the medical, packaging and detergent formulation industries and wastewater treatment.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Tayyeb JZ, Priya M, Guru A, Kishore Kumar MS, Giri J, Garg A, et al.
    Mol Biol Rep, 2024 Mar 15;51(1):423.
    PMID: 38489102 DOI: 10.1007/s11033-024-09407-7
    BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties.

    METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity.

    RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells.

    CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Jampani M, Mateo-Sagasta J, Chandrasekar A, Fatta-Kassinos D, Graham DW, Gothwal R, et al.
    J Hazard Mater, 2024 Jan 05;461:132527.
    PMID: 37788551 DOI: 10.1016/j.jhazmat.2023.132527
    Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Narayanan M, Srinivasan S, Gnanasekaran C, Ramachandran G, Chelliah CK, Rajivgandhi G, et al.
    Microb Pathog, 2024 Apr;189:106595.
    PMID: 38387848 DOI: 10.1016/j.micpath.2024.106595
    Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 μg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 μg/mL and 160 μg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 μg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 μg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 μg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Ng WJ, Ken KW, Kumar RV, Gunasagaran H, Chandramogan V, Lee YY
    PMID: 25435614
    BACKGROUND: Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria.

    MATERIALS AND METHODS: The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883.

    RESULTS: Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE).

    CONCLUSION: Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links