Conversion of lignocellulosic biowastes from agricultural industry into nanocrystalline cellulose provides pathway to reduce environmental pollution while enhancing the economic value of biowastes. Nanocellulose (NCC) with uniform morphology was isolated from pepper (Piper nigrum L.) stalk waste (PW) using acid hydrolysis method. The role of inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid), organic acids (oxalic acid, citric acid, acetic acid) and variation of sonication times were investigated on the physicochemical characteristics, self-assembled structure, crystallinity, particle size, zeta potential and thermal stability of the isolated nanocellulose. Hydrolysis using inorganic acids transformed cellulose from PW into a spherical shaped NCC at ~33-67 nm of average diameter. Meanwhile hydrolysis in organic acids produced rod-shaped NCC at 210-321 nm in length. This study highlighted the role of acidity strength for organic acid and inorganic acid in controlling the level of hydrogen bond dissociation and the dissolution of amorphous fragments, which consequently directing the morphology and the physicochemical properties of NCCs.
A packaging material that is environment-friendly with excellent mechanical and physicochemical properties, biodegradable and ultraviolet (UV) protection and thermal stability was prepared to reduce plastic waste. Six different concentrations of Pennisetum purpureum/Napier cellulose nanowhiskers (NWCs) (i.e. 0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) were used to reinforce polylactic acid (PLA) by a solvent casting method. The resulting bionanocomposite film samples were characterised in terms of their morphology, chemical structure, crystallinity, thermal degradation and stability, light transmittance, water absorption, biodegradability, and physical and mechanical properties. Field-emission scanning electron microscopy showed the excellent dispersion of NWC in the PLA matrix occurred with NWC concentrations of 0.5-1.5 wt%. All the bionanocomposite film samples exhibited good thermal stability at approximately 343-359 °C. The highest water absorption was 1.94%. The lowest transparency at λ800 was 16.16% for the PLA/3.0% NWC bionanocomposite film, which also has the lowest UVA and UVB transmittance of 7.49% and 4.02%, respectively, making it suitable for packaging materials. The PLA/1.0% NWC film exhibited the highest crystallinity of 50.09% and high tensile strength and tensile modulus of 21.22 MPa and 11.35 MPa, respectively.
In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
Carbohydrate polymers are biological macromolecules that have sparked a lot of interest in wound healing due to their outstanding antibacterial properties and sustained drug release. Arabinoxylan (ARX), Chitosan (CS), and reduced graphene oxide (rGO) sheets were combined and crosslinked using tetraethyl orthosilicate (TEOS) as a crosslinker to fabricate composite hydrogels and assess their potential in wound dressing for skin wound healing. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and biological assays were used to evaluate the composite hydrogels. FTIR validated the effective fabrication of the composite hydrogels. The rough morphologies of the composite hydrogels were revealed by SEM and AFM (as evident from the Ra values). ATC-4 was discovered to have the roughest surface. TEM revealed strong homogeneous anchoring of the rGO to the polymer matrix. However, with higher amount of rGO agglomeration was detected. The % swelling at various pHs (1-13) revealed that the hydrogels were pH-sensitive. The controlled release profile for the antibacterial drug (Silver sulfadiazine) evaluated at various pH values (4.5, 6.8, and 7.4) in PBS solution and 37 °C using the Franz diffusion method revealed maximal drug release at pH 7.4 and 37 °C. The antibacterial efficacy of the composite hydrogels against pathogens that cause serious skin diseases varied. The MC3T3-E1 cell adhered, proliferated, and differentiated well on the composite hydrogels. MC3T3-E1 cell also illustrated excellent viability (91%) and proper cylindrical morphologies on the composite hydrogels. Hence, the composite hydrogels based on ARX, CS, and rGO are promising biomaterials for treating and caring for skin wounds.
Thermoplastic starch is a potentially sustainable and biodegradable material. However, it possesses some limitations in terms of mechanical performance and high moisture sensitivity. In this current work, the characteristics of thermoplastic cassava starch (TPCS) containing palm wax at various loading were evaluated. TPCS was prepared via hot pressing by varying the ratios of palm wax (2.5, 5, 10, and 15 wt%). Next, characterization via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), mechanical, water solubility, thickness swelling and moisture absorption tests, were conducted on the samples. The findings showed that incorporating starch-based thermoplastics with palm wax has remarkably improved mechanical characteristics of the thermoplastic blends. Besides, the morphology of the samples demonstrated irregular and rougher cleavage fracture after palm wax addition. FT-IR indicated the existence of intermolecular interaction between TPCS and palm wax with the intermolecular hydrogen bonds that existed between them. The thermal stability of TPCS has improved with rising palm wax content. The incorporation of 15 wt% palm wax resulted in the lowest moisture absorption value among the samples. Overall, the developed TPCS/palm wax with improved mechanical and moisture resistance characteristics has the potential to be used as biodegradable materials.
Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
Cassava starch has acquired many attentions owing to its ability to be developed as thermoplastic cassava starch (TPCS) where it can be obtained in low cost, making it to be one of alternatives to substitute petroleum-based plastic. An attempt was made to investigate the thermal, mechanical and moisture absorption properties of thermoplastic cassava starch blending with beeswax (TPCS-BW) fabricated using hot moulding compression method in the range of beeswax loading from 0, 2.5, 5 to 10 wt%. Addition of beeswax has significantly reduced tensile strength, elongation and flexural strength while improving tensile modulus and flexural modulus until 5 wt% beeswax. Incorporation of 10 wt% beeswax has successfully produced the lowest value of moisture absorption and water solubility among the bio-composite which might be attributed to the beeswax's hydrophobic properties in improving water barrier of the TPCS-BW bio-composite. Furthermore, the addition of beeswax resulted in the appearance of irregular and rough fractured surface. Meanwhile, fourier transform infrared (FT-IR) spectroscopy presented that incorporation of beeswax in the mixture has considerably improve hydrogen bonding of blends indicating good interaction between starch and beeswax. Hence, beeswax with an appropriate loading value able to improve the functional properties of TPCS-BW bio-composite.
In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
Mixed matrix membranes (MMMs) of cellulose acetate/poly(vinylpyrrolidone) (CA/PVP) infused with acid functionalized multiwall carbon nanotubes (f-MWCNTs) were fabricated by an immersion phase separation technique for hemodialysis application. Membranes were characterized using FTIR, water uptake, contact angle, TGA, DMA and SEM analysis. The FTIR was used to confirm the bonding interaction between CA/PVP membrane matrix and f-MWCNTs. Upon addition of f-MWCNTs, TGA thermograms and glass transition temperature indicated improved thermal stability of MMMs. The surface morphological analysis demonstrated revealed uniform distribution of f-MWCNTs and asymmetric membrane structure. The water uptake and contact angle confirmed that hydrophilicity was increased after incorporation of f-MWCNTs. The membranes demonstrated enhancement in water permeate flux, bovine serum albumin (BSA) rejection with the infusion of f-MWCNTs; whereas BSA based anti-fouling analysis using flux recovery ratio test shown up to 8.4% improvement. The urea and creatinine clearance performance of MMMs were evaluated by dialysis experiment. It has been found that f-MWCNTs integrated membranes demonstrated the higher urea and creatinine clearance with increase of 12.6% and 10.5% in comparison to the neat CA/PVP membrane. Thus, the prepared CA/PVP membranes embedded with f-MWCNTs can be employed for wide range of dialysis applications.
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
Poly(lactic acid) (PLA), a bio-based polyester, has been extensively investigated in the recent past owing to its excellent mechanical properties. Several studies have been conducted on PLA blends, with a focus on improving the brittleness of PLA to ensure its suitability for various applications. However, the increasing use of PLA has increased the contamination of PLA-based products in the environment because PLA remains intact even after three years at sea or in soil. This review focuses on analyzing studies that have worked on improving the degradation properties of PLA blends and studies how other additives affect degradation by considering different degradation media. Factors affecting the degradation properties, such as surface morphology, water uptake, and crystallinity of PLA blends, are highlighted. In natural, biotic, and abiotic media, water uptake plays a crucial role in determining biodegradation rates. Immiscible blends of PLA with other polymer matrices cause phase separation, increasing the water absorption. The susceptibility of PLA to hydrolytic and enzymatic degradation is high in the amorphous region because it can be easily penetrated by water. It is essential to study the morphology, water absorption, and structural properties of PLA blends to predict the biodegradation properties of PLA in the blends.
The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by microorganisms as intracellular energy reservoirs under stressful environmental conditions. PHA synthase (PhaC) is the key enzyme responsible for PHA biosynthesis, but the importance of its N- and C-terminal ends still remains elusive. Six plasmid constructs expressing truncation variants of Aquitalea sp. USM4 PhaC (PhaC1As) were generated and heterologously expressed in Cupriavidus necator PHB-4. Removal of the first six residues at the N-terminus enabled the modulation of PHA composition without altering the PHA content in cells. Meanwhile, deletion of 13 amino acids from the C-terminus greatly affected the catalytic activity of PhaC1As, retaining only 1.1-7.4% of the total activity. Truncation(s) at the N- and/or C-terminus of PhaC1As gradually diminished the incorporation of comonomer units, and revealed that the N-terminal region is essential for PhaC1As dimerization whereas the C-terminal region is required for stabilization. Notably, transmission electron microscopy analysis showed that PhaC modification affected the morphology of intracellular PHA granules, which until now is only known to be regulated by phasins. This study provided substantial evidence and highlighted the significance of both the N- and C-termini of PhaC1As in regulating intracellular granule morphology, activity, substrate specificity, dimerization and stability of the synthase.
The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
Nanostructure adsorbents namely nanofibers have been demonstrated to have a high adsorption rate and are efficient to treat wastewater. Herein, chitosan/poly(vinyl alcohol) (PVA) blend nanofiber membranes prepared by electrospinning method were crosslinked using glutaraldehyde and functionalized with 1-allyl-3-methylimidazolium chloride to be used as a potential bio-sorbent for heavy metal ions removal. The chitosan was first hydrolyzed before electrospinning with PVA, followed by crosslinking and further functionalized by ionic liquid to overcome the limitation of chitosan which has low adsorption capacity and unsuitable physical properties for the adsorption process. The morphology and the chemical bond formed were investigated by using field emission scanning electron microscopy with energy dispersive x-ray spectroscopy (FESEM-EDX) and Fourier transform infrared (FTIR) showing that the hydrolyzed chitosan/PVA nanofiber membranes were successfully crosslinked and functionalized. The synthesized adsorbent was evaluated in pure heavy metal ions solutions namely Pb(II), Mn(II), and Cu(II) and shown best performance for Pb(II) ions. The highest adsorption capacity recorded for Pb(II) ions was 166.34 mg/g and are well fitted to the Freundlich isotherm model and pseudo-second-order kinetic model to describe the adsorption equilibrium and kinetic rate of the Pb(II) uptake, respectively. The synthesized adsorbent clearly shows a great capability to remove Pb(II) ions.
This study aimed to utilize cationic protein extracted from the Moringa oleifera seed in the fabrication of cationic starch crosslinked with magnetic nanoparticles (MagCS). Important synthesis parameters include starch to cationic protein volume ratio, magnetic nanoparticles mass fraction, reaction and crosslinking time, reaction and crosslinking temperature and crosslinker concentration. At optimum synthesis conditions, MagCS yield a 38.55% amide content, 2.46 degree of substitution, 1.1 mmol/g charge density and 78.6% crosslinking, which are much higher compared to other starch derivatives. A series of characterization analyses such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, elemental analysis and vibrating sample magnetometer concluded that MagCS was embedded with amide group, has high crystallinity structure, is thermally stable and shows a promising magnetic characteristic. Based on the synthesis parameters and characterization studies, the synthesis mechanism of MagCS was also postulated. The flocculation performance of MagCS was successfully assessed for the treatment of palm oil mill effluent. At optimum dosage, initial pH and settling time of 1.0 g/L, 9.0 and 15 min, the MagCS flocculant was able to remove 90.48, 83.95 and 58.19% of turbidity, color and chemical oxygen demand, respectively. This study provides an alternative eco-friendly materials in the wastewater treatment application.
Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.