Displaying publications 201 - 220 of 2140 in total

Abstract:
Sort:
  1. Amin, Z.M., Koh, S.P., Tan, C.P., Yeap, S.K., Hamid, N.S.A., Long, K.
    MyJurnal
    To study the wound healing efficacy of breadfruit starch hydrolysate, an in vitro wound scratch assay was conducted, in which the migration rate of wounded NIH 3T3 fibroblasts was determined. Wounds treated with lower dextrose equivalent (DE), (DE 10-14) starch hydrolysate were found capable to improve the wound healing of NIH 3T3 fibroblast cell with the percentage of wound closure improvement of 77%, respectively when compared with higher DE range (DE 15-19 and DE 20-24). The findings obtained in the BrdU uptake and MTT viability assays confirmed the wound healing properties of breadfruit starch hydrolysate as the starch hydrolysate-treated wounded NIH 3T3 fibroblasts were able to proliferate well and no cytotoxicity was observed. Together, these findings indicated that the newly developed breadfruit starch hydrolysate performed better than commercial (COM) starch hydrolysate of the same DE ranges. In conclusion, breadfruit starch hydrolysate had better functional properties than did starch hydrolysates derived from other sources and that they could play a beneficial role in wound healing applications.
    Matched MeSH terms: Mice
  2. Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, et al.
    ACS Biomater Sci Eng, 2022 Oct 10;8(10):4196-4206.
    PMID: 34464089 DOI: 10.1021/acsbiomaterials.1c00807
    Pretomanid and MCC7433, a novel nitroimidazopyrazinone analog, are promising antitubercular agents that belong to the bicyclic nitroimidazole family. Despite possessing high cell permeability, they suffer from poor aqueous solubility and require specialized formulations in order to be orally bioavailable. To address this limitation, we investigated the use of mesoporous silica nanoparticles (MCM-41) as drug carriers. MCM-41 nanoparticles were synthesized using a sol-gel method, and their surface was further modified with amine and phosphonate groups. A simple rotary evaporation method was used to incorporate the compounds of interest into the nanoparticles, leading to a high encapsulation efficiency of ≥86% with ∼10% loading (w/w). An overall significant improvement of solubility was also observed, and the pharmacological activity of pretomanid and MCC7433 was fully retained when tested in vitro against Mycobacterium tuberculosis using these nanocarriers. Amino-functionalized MCM-41 nanoparticles were found to enhance the systemic exposure of MCC7433 in mice (1.3-fold higher Cmax) compared to MCC7433 alone. The current work highlights the potential of using nanoparticles such as mesoporous silica as a carrier for oral delivery of poorly soluble antibacterial agents against tuberculosis.
    Matched MeSH terms: Mice
  3. Edwards MJ, Wilson GC, Keitsch S, Soddemann M, Wilker B, Müller CP, et al.
    J Neurochem, 2022 Nov;163(4):357-369.
    PMID: 36227646 DOI: 10.1111/jnc.15708
    Major depressive disorder (MDD) is a severe disease of unknown pathogenesis with a lifetime prevalence of ~10%. Therapy requires prolonged treatment that often fails. We have previously demonstrated that ceramide levels in the blood plasma of patients and in mice with experimental MDD are increased. Neutralization of blood plasma ceramide prevented experimental MDD in mice. Mechanistically, we demonstrated that blood plasma ceramide accumulated in endothelial cells of the hippocampus, inhibited phospholipase D (PLD) and thereby decreased phosphatidic acid in the hippocampus. Here, we demonstrate that phosphatidic acid binds to and controls the activity of phosphotyrosine phosphatase (PTP1B) in the hippocampus and thus determines tyrosine phosphorylation of a variety of cellular proteins including TrkB. Injection of PLD, phosphatidic acid, or inhibition of PTP1B abrogated MDD and normalized cellular tyrosine phosphorylation, including phosphorylation of TrkB and neurogenesis in the hippocampus. Most importantly, these treatments also rapidly normalized behavior of mice with experimental MDD. Since phosphatidic acid binds to and inhibits PTP1B, the lack of phosphatidic acid results in increased activity of PTP1B and thereby in reduced tyrosine phosphorylation of TrkB and other cellular proteins. Thus, our data indicate a novel pathogenetic mechanism of and a rapidly acting targeted treatment for MDD.
    Matched MeSH terms: Mice
  4. Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S
    Front Cell Infect Microbiol, 2022;12:1062682.
    PMID: 36619746 DOI: 10.3389/fcimb.2022.1062682
    INTRODUCTION: Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined.

    METHODS: We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen.

    RESULTS: Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice.

    DISCUSSION: The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.

    Matched MeSH terms: Mice
  5. Shamsi S, Abdul Ghafor AAH, Norjoshukrudin NH, Ng IMJ, Abdullah SNS, Sarchio SNE, et al.
    Int J Nanomedicine, 2022;17:5781-5807.
    PMID: 36474524 DOI: 10.2147/IJN.S369373
    BACKGROUND: The impetuous usage of antibiotics has led to the perpetual rise of methicillin-resistant Staphylococcus aureus (MRSA), which has garnered the interest of potential drug alternatives, including nanomaterials.

    PURPOSE: The present study investigates the stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (GAGO) on several MRSA strains.

    METHODS: The stability of a synthesized and characterized GAGO was monitored in different physiological media. The toxicity profile of GAGO was evaluated in 3T3 murine fibroblast cells and the embryonic zebrafish model. The antibacterial activity of GAGO against MRSA, methicillin-susceptible S. aureus (MSSA), and community-acquired MRSA; with or without Panton-valentine leucocidin gene (MRSA-pvl+ and MRSA-pvl-) was investigated through disk diffusion, CFU counting method, time-kill experiment, and high-resolution transmission electron microscopy (HRTEM) observation.

    RESULTS: A stable GAGO nanocomposite has shown an improved toxicity profile in 3T3 murine fibroblast cells and zebrafish embryos, besides exhibiting normal ROS levels than graphene oxide (GO) and GA (gallic acid). The nanocomposite inhibited the growth of all bacterial strains employed. The effectiveness of the GAGO nanocomposite was comparable to cefoxitin (CFX), at ≥150 µg/mL in MRSA and MSSA. GAGO exhibited a significantly delayed response towards MRSA-pvl+ and MRSA-pvl-, with increased inhibition following 8 to 24 h of exposure, while comparable activity to native GA was only achieved at 24 h. Meanwhile, for MRSA and MSSA, GAGO had a comparable activity with native GA and GO as early as 2 h of exposure. HRTEM observation further reveals that GAGO-exposed cells were membrane compromised.

    CONCLUSION: In summary, the present study indicates the antibacterial potential of GAGO against MRSA strains, but further study is warranted to understand the mechanism of action of GAGO and its resistance in MRSA strains.

    Matched MeSH terms: Mice
  6. Bhattacharya K, Sengupta P, Dutta S, Syamal AK
    Mol Cell Biochem, 2023 Feb;478(2):285-289.
    PMID: 35788949 DOI: 10.1007/s11010-022-04505-1
    Estrogens and progesterone, in unison and/or separately, synchronize the distinct events of blastocyst development, uterine priming and receptivity induction for implantation. In contrast to high implantation failure rates, the mechanistic concepts regarding the uterine receptivity for implantation still remain elusive. The present study aims to define the minimum estradiol (E2) dose to induce uterine receptivity for successful implantation in post-coitus bilaterally ovariectomized (BLO) progesterone-primed uterus of mice. Post-coital sperm-positive adult female mice were divided into two groups. In both the groups, delayed implantation was induced by BLO on post-coitus Day 4 (D4). Group 1 received 2 mg of progesterone (P4) from D5 until sacrifice, and E2 injection of 3.0, 10.0, 25.0 and 50.0 ng on D7. On D8, all mice of this group were sacrificed except the mice that received second dose of 25.0 ng of E2 on D8 and were sacrificed on D9. Group 2 followed the same doses, but were given simultaneously on D4, and sacrificed on D5. The mice that received second doses of 25.0 ng E2 were sacrificed on D6. The minimum dose of E2 required to induce uterine receptivity for implantation is a single dose of 50.0 ng E2. The uterus remained refractory following short receptive period at E2 doses lower than 50.0 ng, which is just sufficient to establish desired uterine receptivity. However, repeated administration of sub-threshold doses of 25.0 ng of E2 could also not effectively sustain uterine receptivity towards successful implantation.
    Matched MeSH terms: Mice
  7. Gul A, Khan H, Shah SI, Alsharif KF, Qahl SH, Rehman IU, et al.
    Front Biosci (Landmark Ed), 2023 Jan 17;28(1):14.
    PMID: 36722262 DOI: 10.31083/j.fbl2801014
    BACKGROUND: Kidneys are among the vital organs of the human body; therefore, damage from any exogenous/endogenous agent may put human life at risk. Arachis hypogaea (AH) contains different free radical scavenging flavonoids, stilbenes, and tannins. This research aimed to elucidate the possible nephroprotective mechanism of AH methanolic crude extract (AHcr) and n-hexane oil fraction (AHO) against gentamycin-induced nephrotoxicity.

    METHODS: After the extraction of the crude oil of the plant, they were tested against a Gentamycin (GM)-treated group of Swiss Albino mice for their nephroprotective action. Animals were divided into six (6) equal groups with five (5) animals in each group. These groups were: control group (0.5 mL normal saline via intraperitoneal -i.p), gentamycin group (gentamycin 100 mg/kg i.p), Silymarin + gentamycin group (Silymarin 50 mg/kg and gentamycin 100 mg/kg i.p), plant extract (AHcr1) and gentamycin group (AHcr1 250 mg/kg and gentamycin 100 mg/kg i.p), AHcr2 + gentamycin group (AHcr2; 500 mg/kg and gentamycin 100 mg/kg i.p) and the hexane oil fraction (AHO) + gentamycin (AHO 1 mL/kg and GM 100 mg/kg i.p). After completion of doses, animals were sacrificed for the collection of blood to further investigate biochemical changes and histopathological changes in kidney tissues.

    RESULTS: Serum creatinine, urea, and blood urea nitrogen significantly increased (p < 0.001) in the gentamycin-treated group as compared to the control group. The elevated level of serum creatinine, urea, and blood urea nitrogen was decreased significantly (p < 0.001) in groups treated with AHcr and AHO compared to the gentamycin group. Similarly, the histopathological study of kidney tissues from the gentamycin group showed tubular necrosis, vacuolation, and fibrosis.

    CONCLUSIONS: The effect of crude extract and hexane soluble fraction of AH caused a significant reversal of gentamycin-induced nephrotoxicity.

    Matched MeSH terms: Mice
  8. Kalinichenko LS, Mühle C, Jia T, Anderheiden F, Datz M, Eberle AL, et al.
    Cereb Cortex, 2023 Jan 05;33(3):844-864.
    PMID: 35296883 DOI: 10.1093/cercor/bhac106
    Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.
    Matched MeSH terms: Mice
  9. Ferdaos N, Harada A, Masuda E, Kasai S, Horaguchi T, Yoshizawa K
    Nutr Cancer, 2023;75(3):1005-1013.
    PMID: 36714982 DOI: 10.1080/01635581.2022.2163669
    Caffeine is a widely consumed stimulant, known for its positive effects on physical and mental performance. These effects are potentially beneficial for ameliorating cancer-related fatigue, which affects the quality of life of patients with cancer. This study aimed to determine the anti-fatigue and antitumor effects of caffeine in tumor-bearing mice. BALB/c mice were intravenously injected with C26 colon carcinoma cells and fed with normal or 0.05% caffeine-supplemented diet. Fatigue-like behavior was assessed by running performance using a treadmill test. Lung, blood, liver, muscle, and epididymal adipose tissue samples were collected on day 13 and examined. The antitumor effect of caffeine was assessed using subcutaneous tumor-bearing mice fed with 0.05% caffeine-supplemented diet, and the tumor volume was measured. C26 tumor-bearing mice showed fatigue-like behavior associated with hypoglycemia, depleted liver glycogen and non-esterified fatty acid (NEFA) levels. C26 tumor-bearing mice fed with 0.05% caffeine-supplemented diet showed improved running performance associated with restored NEFA levels. However, exacerbated hypoglycemia and liver glycogen levels after caffeine consumption may be due to tumor-induced catabolic signals, as the tumor volume was not affected. Collectively, caffeine may exert anti-fatigue effects through enhanced lipolysis leading to restored NEFA levels, which can be used as an alternative energy source.
    Matched MeSH terms: Mice
  10. Banka S, Bennington A, Baker MJ, Rijckmans E, Clemente GD, Ansor NM, et al.
    Brain, 2022 Dec 19;145(12):4232-4245.
    PMID: 35139179 DOI: 10.1093/brain/awac049
    RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.
    Matched MeSH terms: Mice
  11. Kanathasan JS, Palanisamy UD, Radhakrishnan AK, Chakravarthi S, Thong TB, Swamy V
    Nanomedicine (Lond), 2022 Sep;17(21):1511-1528.
    PMID: 36382634 DOI: 10.2217/nnm-2022-0017
    Background: Porous silicon (pSi) nanoparticles (NPs) functionalized with suitable targeting ligands are now established cancer bioimaging agents and drug-delivery platforms. With growing interest in peptides as tumor-targeting ligands, much work has focused on the use of various peptides in combination with pSi NPs for cancer theranostics. Here, the authors investigated the targeting potential of pSi NPs functionalized with two types of peptide, a linear 10-mer peptide and its branched (Y-shaped) equivalent, that respond to legumain activity in tumor cells. Results: In vitro experiments established that the linear peptide-pSi NP conjugate had better aqueous stability under tumor conditions and higher binding efficiency (p  0.05) of linear peptide-conjugated pSi NPs in the tumor site within 4 h compared with nonconjugated pSi NPs. These results suggest that the linear peptide-pSi NP formulation is a nontoxic, stable and efficient fluorescence bioimaging agent and potential drug-delivery platform.
    Matched MeSH terms: Mice
  12. Tan YJD, Brooks DL, Wong KYH, Huang Y, Romero JR, Williams JS, et al.
    J Endocrinol, 2023 Jan 01;256(1).
    PMID: 36327153 DOI: 10.1530/JOE-22-0141
    Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.
    Matched MeSH terms: Mice
  13. Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, et al.
    Front Endocrinol (Lausanne), 2023;14:1124405.
    PMID: 36875481 DOI: 10.3389/fendo.2023.1124405
    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women, affecting up to 15% of women in this group, and the most common cause of anovulatory infertility. Although its etiology remains unclear, recent research has revealed the critical role of endoplasmic reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a condition in which unfolded or misfolded proteins accumulate in the ER because of an imbalance in the demand for protein folding and the protein-folding capacity of the ER. ER stress results in the activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which regulates various cellular activities. In principle, the UPR restores homeostasis and keeps the cell alive. However, if the ER stress cannot be resolved, it induces programmed cell death. ER stress has recently been recognized to play diverse roles in both physiological and pathological conditions of the ovary. In this review, we summarize current knowledge of the roles of ER stress in the pathogenesis of PCOS. ER stress pathways are activated in the ovaries of both a mouse model of PCOS and in humans, and local hyperandrogenism in the follicular microenvironment associated with PCOS is responsible for activating these. The activation of ER stress contributes to the pathophysiology of PCOS through multiple effects in granulosa cells. Finally, we discuss the potential for ER stress to serve as a novel therapeutic target for PCOS.
    Matched MeSH terms: Mice
  14. Yusoff NA, Abd Hamid Z, Chow PW, Shuib S, Taib IS, Budin SB
    Methods Mol Biol, 2024;2736:65-76.
    PMID: 36749486 DOI: 10.1007/7651_2022_477
    Hematopoiesis is maintained throughout life from the hematopoietic stem cell niche in which hematopoietic stem cells and lineage-specific hematopoietic progenitors (HSPCs) reside and regulate hematopoiesis. Meanwhile, HSPCs behavior is modulated by both cell intrinsic (e.g., transcriptional factors) and cell extrinsic (e.g., cytokines) factors. Dysregulation of these factors can alter HSPCs function, leading to disrupted hematopoiesis, cellular changes, and subsequent hematological diseases and malignancies. Moreover, it has been reported that chromosomal aberration (CA) in HSPCs following exposure to carcinogenic or genotoxic agents can initiate leukemia stem cells (LSCs) formation which lays a fundamental mechanism in leukemogenesis. Despite reported studies concerning the chromosomal integrity in HSPCs, CA analysis in lineage-specific HSPCs remains scarce. This indicates a need for a laboratory technique that allows the study of CA in specific HSPCs subpopulations comprising differential hematopoietic lineages. Thus, this chapter focuses on the structural (clastogenicity) and numerical (aneugenicity) form of CA analysis in lineage-specific HSPCs comprised of myeloid, erythroid and lymphoid lineages.In this protocol, we describe how to perform CA analysis in lineage-specific HSPCs derived from freshly isolated mouse bone marrow cells (MBMCs) using the combined techniques of colony-forming unit (CFU) and karyotyping. Prior to CA analysis, lineage-specific HSPCs for myeloid, erythroid, and lymphoid were enriched through colony-forming unit (CFU) assay. CFU assay assesses the proliferative ability and differentiation potential of an individual HSPC within a sample. About 6 to 14 days of cultures are required depending on the type of HSPCs lineage. The optimal duration is crucial to achieve sufficient colony growth that is needed for accurate CFU analysis via morphological identification and colony counting. Then, the CA focusing on clastogenicity and aneugenicity anomalies in respective HSPCs lineage for myeloid, erythroid and Pre-B lymphoid were investigated. The resulted karyotypes were classified according to the types of CA known as Robertsonian (Rb) translocation, hyperploidy or complex. We believe our protocol offers a significant contribution to be utilized as a reference method for chromosomal analysis in lineage-specific HSPCs subpopulations.
    Matched MeSH terms: Mice
  15. Srie Rahayu SY, Aminingsih T, Fudholi A
    J Trace Elem Med Biol, 2022 May;71:126963.
    PMID: 35231878 DOI: 10.1016/j.jtemb.2022.126963
    BACKGROUND AND AIM: Freshwater clam shells nanoparticles powder is one of the uses of freshwater clams that can manufacture instant granular mineral supplements. This product can be used as a supplement to detoxify heavy metal toxins, such as Mercury. Mercury is an element that is detectable in all environmental media. Adults and children receive the most Mercury from food, air, and water intake. The majority of Mercury in the environment comes from the waste from mining activities and the metal industry. Mercury was found widely in the biosphere and is known as a dangerous hepatotoxicant. This study aimed to describe the hepatoprotective role of nano minerals (Ca, Mg, and Zn) produced from freshwater clam shells against mercury acetate poisoning in mice.

    MATERIAL AND METHODS: The mice were divided randomly into a control group (aqua bidest and mercury acetate) and an experimental group for this purpose. The experimental mice group was given orally nano Ca supplementation in three dose groups (9 mg, 18 mg, and 27 mg/200 g animal body weight) once a day for 21 consecutive days. The mice are then given mercury acetate (1300 µg/200 g animal body weight intraperitoneally) on the 21st day. One hour after giving the nano Ca supplement, the mice's blood was taken. Liver and kidney were autopsied two days later to check quantitative and qualitative changes caused by mercury concentrations in liver and kidney histopathologies.

    RESULTS: The results demonstrated the importance of nano Ca supplementation before mercury acetate induction, which has been shown to reduce necrotic depletion and hepatocyte degeneration.

    CONCLUSION: Nano Ca supplementation has decreased the concentration of Hg in the blood of mice so that it can be used as a potential health supplement to detoxify mercury toxins.

    Matched MeSH terms: Mice
  16. Isa T, Zakaria ZA, Rukayadi Y, Mohd Hezmee MN, Jaji AZ, Imam MU, et al.
    Int J Mol Sci, 2016;17(5).
    PMID: 27213349 DOI: 10.3390/ijms17050713
    The use of nanoparticle delivery systems to enhance intracellular penetration of antibiotics and their retention time is becoming popular. The challenge, however, is that the interaction of nanoparticles with biological systems at the cellular level must be established prior to biomedical applications. Ciprofloxacin-cockle shells-derived calcium carbonate (aragonite) nanoparticles (C-CSCCAN) were developed and characterized. Antibacterial activity was determined using a modified disc diffusion protocol on Salmonella Typhimurium (S. Typhimurium). Biocompatibilittes with macrophage were evaluated using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Bromo-2'-deoxyuridine (BrdU) assays. Transcriptional regulation of interleukin 1 beta (IL-1β) was determined using reverse transcriptase-polymerase chain reaction (RT-PCR). C-CSCCAN were spherical in shape, with particle sizes ranging from 11.93 to 22.12 nm. Encapsulation efficiency (EE) and loading content (LC) were 99.5% and 5.9%, respectively, with negative ζ potential. X-ray diffraction patterns revealed strong crystallizations and purity in the formulations. The mean diameter of inhibition zone was 18.6 ± 0.5 mm, which was better than ciprofloxacin alone (11.7 ± 0.9 mm). Study of biocompatability established the cytocompatability of the delivery system without upregulation of IL-1β. The results indicated that ciprofloxacin-nanoparticles enhanced the antibacterial efficacy of the antibiotic, and could act as a suitable delivery system against intracellular infections.
    Matched MeSH terms: Mice
  17. Wang HY, Yang H, Holm M, Tom H, Oltion K, Al-Khdhairawi AAQ, et al.
    Nat Chem, 2022 Dec;14(12):1443-1450.
    PMID: 36123449 DOI: 10.1038/s41557-022-01039-3
    Ternatin-family cyclic peptides inhibit protein synthesis by targeting the eukaryotic elongation factor-1α. A potentially related cytotoxic natural product ('A3') was isolated from Aspergillus, but only 4 of its 11 stereocentres could be assigned. Here, we synthesized SR-A3 and SS-A3-two out of 128 possible A3 epimers-and discovered that synthetic SR-A3 is indistinguishable from naturally derived A3. Relative to SS-A3, SR-A3 exhibits an enhanced residence time and rebinding kinetics, as revealed by single-molecule fluorescence imaging of elongation reactions catalysed by eukaryotic elongation factor-1α in vitro. An increased residence time-stereospecifically conferred by the unique β-hydroxyl in SR-A3-was also observed in cells. Consistent with its prolonged duration of action, thrice-weekly dosing with SR-A3 led to a reduced tumour burden and increased survival in an aggressive Myc-driven mouse lymphoma model. Our results demonstrate the potential of SR-A3 as a cancer therapeutic and exemplify an evolutionary mechanism for enhancing cyclic peptide binding kinetics via stereospecific side-chain hydroxylation.
    Matched MeSH terms: Mice
  18. Anjani QK, Volpe-Zanutto F, Hamid KA, Sabri AHB, Moreno-Castellano N, Gaitán XA, et al.
    J Control Release, 2023 Sep;361:385-401.
    PMID: 37562555 DOI: 10.1016/j.jconrel.2023.08.009
    Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.
    Matched MeSH terms: Mice
  19. Hao H, Ramli R, Wang C, Liu C, Shah S, Mullen P, et al.
    PLoS Biol, 2023 Jan;21(1):e3001958.
    PMID: 36603052 DOI: 10.1371/journal.pbio.3001958
    Accumulating observations suggest that peripheral somatosensory ganglia may regulate nociceptive transmission, yet direct evidence is sparse. Here, in experiments on rats and mice, we show that the peripheral afferent nociceptive information undergoes dynamic filtering within the dorsal root ganglion (DRG) and suggest that this filtering occurs at the axonal bifurcations (t-junctions). Using synchronous in vivo electrophysiological recordings from the peripheral and central processes of sensory neurons (in the spinal nerve and dorsal root), ganglionic transplantation of GABAergic progenitor cells, and optogenetics, we demonstrate existence of tonic and dynamic filtering of action potentials traveling through the DRG. Filtering induced by focal application of GABA or optogenetic GABA release from the DRG-transplanted GABAergic progenitor cells was specific to nociceptive fibers. Light-sheet imaging and computer modeling demonstrated that, compared to other somatosensory fiber types, nociceptors have shorter stem axons, making somatic control over t-junctional filtering more efficient. Optogenetically induced GABA release within DRG from the transplanted GABAergic cells enhanced filtering and alleviated hypersensitivity to noxious stimulation produced by chronic inflammation and neuropathic injury in vivo. These findings support "gating" of pain information by DRGs and suggest new therapeutic approaches for pain relief.
    Matched MeSH terms: Mice
  20. Syed MH, Rubab SA, Abbas SR, Qutaba S, Mohd Zahari MAK, Abdullah N
    J Biochem Mol Toxicol, 2023 Aug;37(8):e23382.
    PMID: 37128655 DOI: 10.1002/jbt.23382
    Cadmium (Cd) is a heavy metal with various human exposure sources. It accumulates in the liver, forming a complex with metallothionein protein and progresses to other organs. As a heavy metal, cadmium can replace calcium and other divalent ions and disturb their cascades, ultimately affecting the vital organs. Since cadmium acetate (CA) is considered more lethal than other Cd compounds, the current study examines the effect of different concentrations of CA doses in drinking water for different exposure times in murine models (Mus musculus). After the exposure period, the murine models were then examined histopathologically and biochemically. The histopathological examination of the heart, liver, and kidneys of the experimental group showed extensive degenerative effects. Atomic absorption spectroscopy was used to determine the quantity of cadmium in serum, kidney, and hepatic tissues. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of hepatic proteins, especially metallothionein, directly related to Cd administration. The biochemical parameters, including creatine kinase, alanine aminotransferase, aspartate aminotransferase, total proteins, glucose, urea, uric acid, and creatinine, were also analyzed. After thorough histochemical and biochemical analysis, it was concluded that even low dose exposure of CA is hazardous to murine models with damaging effects.
    Matched MeSH terms: Mice
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links