Displaying all 2 publications

Abstract:
Sort:
  1. Wang HY, Yang H, Holm M, Tom H, Oltion K, Al-Khdhairawi AAQ, et al.
    Nat Chem, 2022 Dec;14(12):1443-1450.
    PMID: 36123449 DOI: 10.1038/s41557-022-01039-3
    Ternatin-family cyclic peptides inhibit protein synthesis by targeting the eukaryotic elongation factor-1α. A potentially related cytotoxic natural product ('A3') was isolated from Aspergillus, but only 4 of its 11 stereocentres could be assigned. Here, we synthesized SR-A3 and SS-A3-two out of 128 possible A3 epimers-and discovered that synthetic SR-A3 is indistinguishable from naturally derived A3. Relative to SS-A3, SR-A3 exhibits an enhanced residence time and rebinding kinetics, as revealed by single-molecule fluorescence imaging of elongation reactions catalysed by eukaryotic elongation factor-1α in vitro. An increased residence time-stereospecifically conferred by the unique β-hydroxyl in SR-A3-was also observed in cells. Consistent with its prolonged duration of action, thrice-weekly dosing with SR-A3 led to a reduced tumour burden and increased survival in an aggressive Myc-driven mouse lymphoma model. Our results demonstrate the potential of SR-A3 as a cancer therapeutic and exemplify an evolutionary mechanism for enhancing cyclic peptide binding kinetics via stereospecific side-chain hydroxylation.
  2. Urbina-Blanco CA, Jilani SZ, Speight IR, Bojdys MJ, Friščić T, Stoddart JF, et al.
    Nat Chem, 2020 Sep;12(9):773-776.
    PMID: 32807887 DOI: 10.1038/s41557-020-0529-x
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links