MATERIALS & METHODS: Data were obtained retrospectively from all patients who underwent both CT examinations - brain (frontal bone), thorax (T7), abdomen (L3), spine (T7 & L3) or pelvis (left hip) - and DXA between 2014 and 2018 in our centre. To ensure comparability, the period between CT and DXA studies must not exceed one year. Correlations between HU values and t-scores were calculated using Pearson's correlation. Receiver operating characteristic (ROC) curves were generated, and the area under the curve (AUC) was used to determine threshold HU values for predicting osteoporosis.
RESULTS: The inclusion criteria were met by 1043 CT examinations (136 head, 537 thorax, 159 lumbar and 151 left hip). The left hip consistently provided the most robust correlations (r = 0.664-0.708, p 0.05.
CONCLUSION: HU values derived from the hip, T7 and L3 provided a good to moderate correlation to t-scores with a good prediction for osteoporosis. The suggested optimal thresholds may be used in clinical settings after external validations are performed.
METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.
RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p