PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.
METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.
RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.
CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.
METHODS: PD patients with constipation (ROME III criteria) were randomized to receive a multi-strain probiotic (Lactobacillus sp and Bifidobacterium sp at 30 X 109 CFU) with fructo-oligosaccaride or placebo (fermented milk) twice daily for 8 weeks. Primary outcomes were changes in the presence of constipation symptoms using 9 items of Garrigues Questionnaire (GQ), which included an item on bowel opening frequency. Secondary outcomes were gut transit time (GTT), quality of life (PDQ39-SI), motor (MDS-UPDRS) and non-motor symptoms (NMSS).
RESULTS: Of 55 recruited, 48 patients completed the study: 22 received probiotic and 26 received placebo. At 8 weeks, there was a significantly higher mean weekly BOF in the probiotic group compared to placebo [SD 4.18 (1.44) vs SD 2.81(1.06); (mean difference 1.37, 95% CI 0.68, 2.07, uncorrected p<0.001)]. Patients in the probiotic group reported five times higher odds (odds ratio = 5.48, 95% CI 1.57, 19.12, uncorrected p = 0.008) for having higher BOF (< 3 to 3-5 to >5 times/week) compared to the placebo group. The GTT in the probiotic group [77.32 (SD55.35) hours] reduced significantly compared to placebo [113.54 (SD 61.54) hours]; mean difference -36.22, 95% CI -68.90, -3.54, uncorrected p = 0.030). The mean change in GTT was 58.04 (SD59.04) hour vs 20.73 (SD60.48) hours respectively (mean difference 37.32, 95% CI 4.00, 70.63, uncorrected p = 0.028). No between-groups differences were observed in the NMSS, PDQ39-SI, MDS-UPDRS II and MDS-UPDRS III scores. Four patients in the probiotics group experienced mild reversible side effects.
CONCLUSION: This study showed that consumption of a multi-strain probiotic (Hexbio®) over 8 weeks improved bowel opening frequency and whole gut transit time in PD patients with constipation.
METHODOLOGY: We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy.
RESULTS: Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health.
CONCLUSION: Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.
METHODS AND RESULTS: The discussion ranged from examining scientific literature supporting the efficacy of established prebiotics, to the prospects for establishing health benefits associated with novel compounds, isolated from different sources.
CONCLUSIONS: While many promising candidate prebiotics from across the globe have been highlighted in preliminary research, there are a limited number with both demonstrated mechanism of action and defined health benefits as required to meet the prebiotic definition. Prebiotics are part of a food industry with increasing market sales, yet there are great disparities in regulations in different countries. Identification and commercialization of new prebiotics with unique health benefits means that regulation must improve and remain up-to-date so as not to risk stifling research with potential health benefits for humans and other animals.
SIGNIFICANCE AND IMPACT OF STUDY: This summary of the workshop discussions indicates potential avenues for expanding the range of prebiotic substrates, delivery methods to enhance health benefits for the end consumer and guidance to better elucidate their activities in human studies.
Results: We tested the isolated bacteria using a selection of antibiotics. The results showed that both the number of antibiotic resistant strains and resistance level were higher in humans than NHPs. Overall, the composition of gut microbiome and pattern of antibiotic resistance showed that there was higher similarity between MF and TC, the two NHPs, than with HS. In addition, samples with higher levels of antibiotic resistance showed lower bacterial richness. Homo sapiens had the lowest bacterial diversity and yet it had higher abundance of Bacteroides. In contrast, NHPs displayed higher bacterial richness and greater prevalence of Firmicutes such as Ruminococceae and Oscillospira.
Conclusion: Higher antibiotic susceptibility in NHPs is likely related to low direct exposure to antibiotics. The lack of resistance may also suggest limited antimicrobial resistance transmission between humans and NHP. Nonetheless, continued monitoring over a long period will help mitigate the risk of anthropozoonosis and zooanthroponosis.