Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Mahboob I, Shafique S, Shafiq I, Akhter P, Belousov AS, Show PL, et al.
    Environ Res, 2023 Feb 01;218:114983.
    PMID: 36462696 DOI: 10.1016/j.envres.2022.114983
    Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.
    Matched MeSH terms: Phenols; Phenol*
  2. Lawal AA, Hassan MA, Ahmad Farid MA, Tengku Yasim-Anuar TA, Samsudin MH, Mohd Yusoff MZ, et al.
    Environ Pollut, 2021 Jan 15;269:116197.
    PMID: 33316496 DOI: 10.1016/j.envpol.2020.116197
    In order to meet the growing demand for adsorbents to treat wastewater effectively, there has been increased interest in using sustainable biomass feedstocks. In this present study, the dermal tissue of oil palm frond was pyrolyzed with superheated steam at 500 °C to produce nanoporous biochar as bioadsorbent. The effect of operating conditions was investigated to understand the adsorption mechanism and to enhance the adsorption of phenol and tannic acid. The biochar had a microporous structure with a Brunauer-Emmett-Teller surface area of 422 m2/g containing low polar groups. The adsorption capacity of 62.89 mg/g for phenol and 67.41 mg/g for tannic acid were obtained using 3 g/L biochar dosage after 8 h of treatment at solution pH of 6.5 and temperature of 45 °C. The Freundlich model had the best fit to the isotherm data of phenol (R2 of 0.9863), while the Langmuir model best elucidated the isotherm data of tannic acid (R2 of 0.9632). These indicated that the biochar-phenol interface was associated with a heterogeneous multilayer sorption mechanism, while the biochar-tannic acid interface had a nonspecific monolayer sorption mechanism. The residual concentration of 26.3 mg/L phenol and 23.1 mg/L tannic acid was achieved when treated from 260 mg/L three times consecutively with 1 g/L biochar dosage, compared to a reduction to 72.3 mg/L phenol and 69.9 mg/L tannic acid using 3 g/L biochar dosage in a single treatment. The biochar exhibited effective adsorption of phenol and tannic acid, making it possible to treat effluents that contain varieties of phenolic compounds.
    Matched MeSH terms: Phenols/analysis; Phenol/analysis
  3. Muthukumaravel K, Vasanthi N, Stalin A, Alam L, Santhanabharathi B, Musthafa MS
    Environ Sci Pollut Res Int, 2021 Mar;28(11):13752-13760.
    PMID: 33191468 DOI: 10.1007/s11356-020-11434-3
    Acute toxicity (96 h LC50) of phenol was analyzed in the cat fish Mystus vittatus in static bio-assay over a 96-h exposure period using probit method. The 24, 48, 72, and 96 h LC50 values (with 95% confidence limits) of phenol for fingerling catfish were found out as 13.98, 13.17, 12.62, and 12.21 mg/l respectively. Investigations pertaining to the histopathological sections have shown high degree of pathological lesions observed in various parts like gill, liver intestine, and kidney of the fish species. Analysis of gill section revealed observable changes in the experimental species such as fusion, malformation at the tip of secondary lamellae, vacuolation, hyperplasia, and epithelial damage. Exposure of phenol showed cytoplasmic vacuolation, tissue damage, and loss of hepatic cell wall in the liver of experimental organism. Lesions of tissue damage at the epithelial site, inflammation, and clumping of adjacent villi made of columnar epithelium have been observed in the intestine of fish, and also the excretory part of the fish kidney revealed various changes like glomerular atrophy, damage of Bowman's capsule, vacuolization, and degeneration of renal epithelium. The current study on histological changes observed in the experimental organisms has thrown light on the current scenario which poses threat and danger to the whole aquatic ecosystem, and this study plays a vital role in assessing the aquatic pollution.
    Matched MeSH terms: Phenol/toxicity
  4. Toh RH, Lim PE, Seng CE, Adnan R
    Bioresour Technol, 2013 Sep;143:265-74.
    PMID: 23796608 DOI: 10.1016/j.biortech.2013.05.126
    The objectives of the study are to use immobilized acclimated biomass and immobilized biomass-powdered activated carbon (PAC) as a novel approach in the bioregeneration of granular activated carbon (GAC) loaded with phenol and o-cresol, respectively, and to compare the efficiency and rate of the bioregeneration of the phenolic compound-loaded GAC using immobilized and suspended biomasses under varying GAC dosages. Bioregeneration of GAC loaded with phenol and o-cresol, respectively, was conducted in batch system using the sequential adsorption and biodegradation approach. The results showed that the bioregeneration efficiency of GAC loaded with phenol or o-cresol was basically the same irrespective of whether the immobilized or suspended biomass was used. Nonetheless, the duration for bioregeneration was longer under immobilized biomass. The beneficial effect of immobilized PAC-biomass for bioregeneration is the enhancement of the removal rate of the phenolic compounds via adsorption and the shortening of the bioregeneration duration.
    Matched MeSH terms: Phenol/chemistry*
  5. Yusoff N, Ong SA, Ho LN, Wong YS, Saad FNM, Khalik W, et al.
    J Environ Sci (China), 2019 Jan;75:64-72.
    PMID: 30473308 DOI: 10.1016/j.jes.2018.03.001
    Hybrid growth microorganisms in sequencing batch reactors have proven effective for treating the toxic compound phenol, but the toxicity effect under different toxicity conditions has rarely been discussed. Therefore, the performance of the HG-SBR under toxic, acute and chronic organic loading can provide the overall operating conditions of the system. Toxic organic loading (TOL) was monitored during the first 7hr while introducing 50mg/L phenol to the system. The system was adversely affected with the sudden introduction of phenol to the virgin activated sludge, which caused a low degradation rate and high dissolved oxygen consumption during TOL. Acute organic loading (AOL) had significant effects at high phenol concentrations (600, 800 1000mg/L). The specific oxygen uptake rate (SOUR) gradually decreased to 4.9mg O2/(g MLVSS·hr) at 1000mg/L of phenol compared to 12.74mg O2/(g MLVSS·hr) for 200mg/L of phenol. The HG-SBR was further monitored during chronic organic loading (COL) over 67days. The effects of organic loading were more apparent at 800mg/L and 1000mg/L phenol concentrations, as the removal range was between 22%-30% and 18%-46% respectively, which indicated the severe effects of COL.
    Matched MeSH terms: Phenol/metabolism*
  6. Leong KY, Adnan R, Lim PE, Ng SL, Seng CE
    Environ Sci Pollut Res Int, 2017 Sep;24(26):20959-20971.
    PMID: 28726220 DOI: 10.1007/s11356-017-9636-7
    The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.
    Matched MeSH terms: Chlorophenols/chemistry*; Phenol/chemistry*
  7. Rehman GU, Tahir M, Goh PS, Ismail AF, Samavati A, Zulhairun AK, et al.
    Environ Pollut, 2019 Oct;253:1066-1078.
    PMID: 31434184 DOI: 10.1016/j.envpol.2019.07.013
    In this study, the synthesis of Fe3O4@GO@g-C3N4 ternary nanocomposite for enhanced photocatalytic degradation of phenol has been investigated. The surface modification of Fe3O4 was performed through layer-by-layer electrostatic deposition meanwhile the heterojunction structure of ternary nanocomposite was obtained through sonicated assisted hydrothermal method. The photocatalysts were characterized for their crystallinity, surface morphology, chemical functionalities, and band gap energy. The Fe3O4@GO@g-C3N4 ternary nanocomposite achieved phenol degradation of ∼97%, which was significantly higher than that of Fe3O4@GO (∼75%) and Fe3O4 (∼62%). The enhanced photoactivity was due to the efficient charge carrier separation and desired band structure. The photocatalytic performance was further enhanced with the addition of hydrogen peroxide, in which phenol degradation up to 100% was achieved in 2 h irradiation time. The findings revealed that operating parameters have significant influences on the photocatalytic activities. It was found that lower phenol concentration promoted higher activity. In this study, 0.3 g of Fe3O4@GO@g-C3N4 was found to be the optimized photocatalyst for phenol degradation. At the optimized condition, the reaction rate constant was reported as 6.96 × 10-3 min-1. The ternary photocatalyst showed excellent recyclability in three consecutive cycles, which confirmed the stability of this ternary nanocomposite for degradation applications.
    Matched MeSH terms: Phenols; Phenol
  8. Abdullah, Z., Halim, Z.I.A., Bakar, M.A.A., Idris, A.M.
    ASM Science Journal, 2009;3(1):39-44.
    MyJurnal
    3-Nitro-2-phenoxypyridine and 3-nitro-2-(4-methyl)phenoxypyridine were obtained when 2-chloro-3-nitropyridine was treated with phenol and p-cresol, respectively. Fluorescence studies were carried out in various solvents, in capped and uncapped conditions and for differing concentrations. Both 3-nitro-2-phenoxypyridine and 3-nitro-2-(4-methyl)phenoxypyridine were fluorescent compounds but 3-Nitro-2-(4-methyl)phenoxypyridine was more fluorescent than 3-nitro-2-phenoxypyridine in all the solvents used. The fluorescence intensity decreased with concentration and time.
    Matched MeSH terms: Phenols; Phenol
  9. Omar, N.N., Abdullah, N., Mustafa, I.S., Sulaiman, F.
    ASM Science Journal, 2018;11(1):9-22.
    MyJurnal
    Oil palm frond is known to be the largest contributor to the oil palm residues, providing
    up to 50.3% of the total residues. Since it has a very limited utility, an initiative was taken
    by this study to investigate its suitability for bio-oil production. Hence, slow pyrolysis was
    conducted in an experimental setup equipped with a fixed bed reactor and a liquid collection
    system. From the experiments, the effect of reaction temperature on the bio-oil yield was
    examined. The characteristics of the obtained bio-oil were also investigated to study its
    potential as a substitute of phenol. It was found that at reaction temperature of 375oC,
    highest yield of bio-oil was obtained at 38.4 wt%. Meanwhile, the characteristics of oil palm
    frond and its bio-oil were found to be approximately similar to the characteristics of typical
    softwoods and their bio-oil. Most softwood biomass has been successfully used as a phenol
    substitute. Therefore, the potential of this bio-oil to be used as a phenol substitute was
    enhanced.
    Matched MeSH terms: Phenols; Phenol; Polyphenols
  10. Ali Ahmadzadeh, Sarani Zakaria, Maisarah Yusoff
    The liquefaction of oil palm empty fruit bunch (EFB) in phenol was carried out in the presence of sulfuric acid as a catalyst in the reflux condenser system. The effect of initial phenol input and EFB on liquefaction reaction was investigated by measuring the reaction yield, EFB residue and combined phenol. The initial ratio of phenol to EFB has the greatest influence on the residue and reaction yield. The liquefaction products consist of some liquid by products with high amount of OH groups. The amount of this byproduct is 0.5 time of the solid product (phenolic resin).
    Matched MeSH terms: Phenols; Phenol
  11. Ali Ahmadzadeh, Sarani Zakaria, Rozaidi Rasid, Sharifah Nabihah
    Sains Malaysiana, 2008;37:233-237.
    Biofiber is used in the polymer based composite as a renewable resource due to its positive environmental benefits, biodegradable properties, low cost and high toughness. Biocomposite was fabricated using oil palm empty fruit bunch (EFB) as filler in phenolated EFB (PEFB) matrix. Phenolated EFB (PEFB) obtained from liquefaction of EFB in phenol was used as a biopolymer to replace novolak phenolic resin which is commonly used in composite materials. Sulfuric acid was used as a catalyst in the liquefaction reaction. The effect of thermal aging and blending ratio of PEFB matrix and EFB fibers on the mechanical properties of composites has been studied. The flexural data before and after thermal aging revealed the optimum amount of EFB filler is 50% . The result showed better compatibility between EFB and PEFB when compared with EFB and commercial novolak resin.
    Matched MeSH terms: Phenols; Phenol
  12. Nuryawan A, Abdullah CK, Hazwan CM, Olaiya NG, Yahya EB, Risnasari I, et al.
    Polymers (Basel), 2020 Apr 27;12(5).
    PMID: 32349385 DOI: 10.3390/polym12051007
    Using oil palm trunk (OPT) layered with empty fruit bunch (EFB), so-called hybrid plywood enhanced with palm oil ash nanoparticles, with phenol-formaldehyde (PF) resin as a binder, was produced in this study. The phenol-formaldehyde (PF) resins filled with different loading of oil palm ash (OPA) nanoparticles were prepared and used as glue for layers of the oil palm trunk (OPT) veneer and empty fruit bunch fibre mat. The resulting hybrid plywood produced was characterised. The physical, mechanical, thermal, and morphological properties of the hybrid plywood panels were investigated. The results obtained showed that the presence of OPA nanoparticles significantly affected the physical, mechanical, and thermal properties of the plywood panels. Significant improvements in dimension from water absorption and thickness swelling experiments were obtained for the plywood panels with the highest OPA nanoparticles loading in PF resin. The mechanical properties indicated that plywood composites showed improvement in flexural, shear, and impact properties until a certain loading of OPA nanoparticles in PF resin. Fracture surface morphology also showed the effectiveness of OPA nanoparticles in the reduction of layer breakage due to force and stress distribution. The thermal stability performance showed that PF filled OPA nanoparticles contributed to the thermal stability of the plywood panels. Therefore, the results obtained in this study showed that OPA nanoparticles certainly improved the characteristic of the hybrid plywood.
    Matched MeSH terms: Phenols; Phenol
  13. Yaqoob AA, Al-Zaqri N, Alamzeb M, Hussain F, Oh SE, Umar K
    Molecules, 2023 May 25;28(11).
    PMID: 37298824 DOI: 10.3390/molecules28114349
    Microbial fuel cells (MFCs) seem to have emerged in recent years to degrade the organic pollutants from wastewater. The current research also focused on phenol biodegradation using MFCs. According to the US Environmental Protection Agency (EPA), phenol is a priority pollutant to remediate due to its potential adverse effects on human health. At the same time, the present study focused on the weakness of MFCs, which is the low generation of electrons due to the organic substrate. The present study used rotten rice as an organic substrate to empower the MFC's functional capacity to degrade the phenol while simultaneously generating bioenergy. In 19 days of operation, the phenol degradation efficiency was 70% at a current density of 17.10 mA/m2 and a voltage of 199 mV. The electrochemical analysis showed that the internal resistance was 312.58 Ω and the maximum specific capacitance value was 0.00020 F/g on day 30, which demonstrated mature biofilm production and its stability throughout the operation. The biofilm study and bacterial identification process revealed that the presence of conductive pili species (Bacillus genus) are the most dominant on the anode electrode. However, the present study also explained well the oxidation mechanism of rotten rice with phenol degradation. The most critical challenges for future recommendations are also enclosed in a separate section for the research community with concluding remarks.
    Matched MeSH terms: Phenols; Phenol
  14. Latif NHA, Brosse N, Ziegler-Devin I, Chrusiel L, Hashim R, Hussin MH
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127210.
    PMID: 37797852 DOI: 10.1016/j.ijbiomac.2023.127210
    The effects of steam explosion (SE) pretreatment on the structural properties of lignin isolated from coconut husk (CH) biomass via soda pulping were investigated in this work. The isolated SE lignin was classified as dilute acid impregnation SE lignin (ASEL), water impregnation SE lignin (WSEL), and 2-naphthol impregnation SE lignin (NSEL). The various types of functional groups isolated from SE lignin were characterized and compared using a variety of complementary analyses: FTIR spectroscopy, NMR spectroscopy, GPC chromatography, HPAEC-PAD chromatography and thermal analyses. It was revealed that ASEL has the highest solid recovery with 55.89 % yield as well as the highest sugars content compared to WSEL (45.66 % yield) and NSEL (49.37 % yield). Besides, all isolated SE lignin contain a significant quantity of non-condensed G-type and S-type units but less amount of H-type units as supported by previous research. The SE lignin produced lignin with higher molecular weight (Mw ASEL: 72725 g mol-1 > Mw WSEL: 13112 g mol-1 > Mw NSEL: 6891 g mol-1) seems to influence the success of the synthesis reaction of phenolic resins. Because of the large variances in the physicochemical properties of SE lignin polymers, their structural properties were increased toward numerous alternative techniques in lignin-based applications.
    Matched MeSH terms: Phenol
  15. Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MY, Syed MA
    World J Microbiol Biotechnol, 2012 Jan;28(1):347-52.
    PMID: 22806810 DOI: 10.1007/s11274-011-0826-z
    A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm(2)) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l(-1), both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l(-1) phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l(-1). However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.
    Matched MeSH terms: Phenol/metabolism*
  16. Zainudin NF, Abdullah AZ, Mohamed AR
    J Hazard Mater, 2010 Feb 15;174(1-3):299-306.
    PMID: 19818556 DOI: 10.1016/j.jhazmat.2009.09.051
    Photocatalytic degradation of phenol was investigated using the supported nano-TiO(2)/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO(2) as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO(2):ZSM-5:silica gel:colloidal silica gel=1:0.6:0.6:1) which giving about 90% degradation of 50mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m(2)/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.
    Matched MeSH terms: Phenol/chemistry*
  17. Alam MZ
    Med J Malaysia, 2004 May;59 Suppl B:216-7.
    PMID: 15468895
    Studies on the removal of phenol from aqueous solutions by adsorption on sewage treatment plant biosolids (BS) as low-cost adsorbent were carried out with an aim to obtain information on treating phenol-containing wastewater from different industries. A series of experiments were undertaken in a batch adsorption technique to access the effect of the process variables i.e. initial phenol concentration, contact time, initial pH and adsorbent dose. The results showed that the adsorption capacity of BS in aqueous solution increased with the decrease in initial concentration and pH, and increase in contact time and dose of adsorbent. The experimental results were fitted by Langmuir and Freundlich isotherms to describe the biosorption processes.
    Matched MeSH terms: Phenol/pharmacokinetics*
  18. Aziz NA, Latip AFA, Peng LC, Latif NHA, Brosse N, Hashim R, et al.
    Int J Biol Macromol, 2019 Dec 01;141:185-196.
    PMID: 31479667 DOI: 10.1016/j.ijbiomac.2019.08.255
    Lignin was extracted from coconut husk via alkaline pulping, either Kraft or soda. The isolated lignin samples were classified as hydroxy-benzaldehyde, vanillin, and syringaldehyde type according to Fourier-transform Infrared Spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR) spectra. Soda lignin (SL) showed higher thermal stability and glass transition temperature (Tg) than Kraft lignin (KL) as proven by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The soda-lignin-phenol-glyoxal (SLPG) resins with the optimum percentage of lignin substitution at 30% showed improved solid content and gel time in comparison to 30% of Kraft-lignin-phenol-glyoxal (KLPG) and phenol-glyoxal (PG) resin. The good mechanical properties in SLPG is due to the higher amount of molecular weight as well as higher phenolic and G-type unit in lignin that improve the properties of 30% SLPG adhesive. Moreover, the addition of layered double hydroxides (LDH) as reinforced filler up to 15%-30% SLPG adhesive blend shows a great performance (especially mechanical properties) as compared to 30% SLPG adhesive alone.
    Matched MeSH terms: Phenol/chemistry*
  19. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Hussain FB, Hye Khan MA, et al.
    Indian J Med Res, 2010 Jan;131:76-82.
    PMID: 20167977
    Regulation of renal function and haemodynamics are under a direct control from the renal sympathetic nerves and renal denervation produces overt diuresis and natriuresis in several mammalian species. However, the inter-related series of changes in renal function and haemodynamics following acute renal denervation (ARD) is not fully understood. Thus, we aimed to investigate and relate the changes in renal function and haemodynamics following acute unilateral renal denervation in anaesthetized Sprague Dawley (SD) rats.
    Matched MeSH terms: Phenol/administration & dosage
  20. Tengku-Mazuki TA, Darham S, Convey P, Shaharuddin NA, Zulkharnain A, Khalil KA, et al.
    Braz J Microbiol, 2024 Mar;55(1):629-637.
    PMID: 38110706 DOI: 10.1007/s42770-023-01215-8
    Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem. A microbial growth model is presented for the growth of a bacterial cell consortium used in the biodegradation of phenol in media containing different metal ions, namely arsenic (As), cadmium (Cd), aluminium (Al), nickel (Ni), silver (Ag), lead (Pb) and cobalt (Co). Bacterial growth was inhibited by these ions in the rank order of Al phenol, whereas this concentration of the other metal ions tested had no effect on degradation. The biokinetic growth model developed supports the suitability of the bacterial consortium for use in phenol degradation.
    Matched MeSH terms: Phenols/pharmacology; Phenol/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links