Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Xiang X, Xie L, Lin J, Pare R, Huang G, Huang J, et al.
    Biogerontology, 2023 Oct;24(5):783-799.
    PMID: 36683095 DOI: 10.1007/s10522-023-10015-4
    Atherosclerosis threatens human health by developing cardiovascular diseases, the deadliest disease world widely. The major mechanism contributing to the formation of atherosclerosis is mainly due to vascular endothelial cell (VECs) senescence. We have shown that 17β-estradiol (17β-E2) may protect VECs from senescence by upregulating autophagy. However, little is known about how 17β-E2 activates the autophagy pathway to alleviate cellular senescence. Therefore, the aim of this study is to determine the role of estrogen receptor (ER) α and β in the effects of 17β-E2 on vascular autophagy and aging through in vitro and in vivo models. Hydrogen peroxide (H2O2) was used to establish Human Umbilical Vein Endothelial Cells (HUVECs) senescence. Autophagy activity was measured through immunofluorescence and immunohistochemistry staining of light chain 3 (LC3) expression. Inhibition of ER activity was established using shRNA gene silencing and ER antagonist. Compared with ER-β knockdown, we found that knockdown of ER-α resulted in a significant increase in the extent of HUVEC senescence and senescence-associated secretory phenotype (SASP) secretion. ER-α-specific shRNA was found to reduce 17β-E2-induced autophagy, promote HUVEC senescence, disrupt the morphology of HUVECs, and increase the expression of Rb dephosphorylation and SASP. These in vitro findings were found consistent with the in vivo results. In conclusion, our data suggest that 17β-E2 activates the activity of ER-α and then increases the formation of autophagosomes (LC3 high expression) and decreases the fusion of lysosomes with autophagic vesicles (P62 low expression), which in turn serves to decrease the secretion of SASP caused by H2O2 and consequently inhibit H2O2-induced senescence in HUVEC cells.
    Matched MeSH terms: Estradiol/pharmacology
  2. Bhattacharya K, Sengupta P, Dutta S, Syamal AK
    Mol Cell Biochem, 2023 Feb;478(2):285-289.
    PMID: 35788949 DOI: 10.1007/s11010-022-04505-1
    Estrogens and progesterone, in unison and/or separately, synchronize the distinct events of blastocyst development, uterine priming and receptivity induction for implantation. In contrast to high implantation failure rates, the mechanistic concepts regarding the uterine receptivity for implantation still remain elusive. The present study aims to define the minimum estradiol (E2) dose to induce uterine receptivity for successful implantation in post-coitus bilaterally ovariectomized (BLO) progesterone-primed uterus of mice. Post-coital sperm-positive adult female mice were divided into two groups. In both the groups, delayed implantation was induced by BLO on post-coitus Day 4 (D4). Group 1 received 2 mg of progesterone (P4) from D5 until sacrifice, and E2 injection of 3.0, 10.0, 25.0 and 50.0 ng on D7. On D8, all mice of this group were sacrificed except the mice that received second dose of 25.0 ng of E2 on D8 and were sacrificed on D9. Group 2 followed the same doses, but were given simultaneously on D4, and sacrificed on D5. The mice that received second doses of 25.0 ng E2 were sacrificed on D6. The minimum dose of E2 required to induce uterine receptivity for implantation is a single dose of 50.0 ng E2. The uterus remained refractory following short receptive period at E2 doses lower than 50.0 ng, which is just sufficient to establish desired uterine receptivity. However, repeated administration of sub-threshold doses of 25.0 ng of E2 could also not effectively sustain uterine receptivity towards successful implantation.
    Matched MeSH terms: Estradiol/pharmacology
  3. Xiang X, Wang Y, Huang G, Huang J, Gao M, Sun M, et al.
    J Steroid Biochem Mol Biol, 2023 Mar;227:106244.
    PMID: 36584773 DOI: 10.1016/j.jsbmb.2022.106244
    OBJECTIVE: 17β-estradiol (17β-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17β-E2-induced autophagy.

    METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated β-galactosidase staining.

    RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17β-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17β-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17β-E2-induced autophagy and suppression of H2O2-induced senescence.

    CONCLUSION: Our findings demonstrated that 17β-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.

    Matched MeSH terms: Estradiol/pharmacology
  4. Ganaraja B, Pavithran P, Ghosh S
    Indian J Med Sci, 2004 Apr;58(4):150-4.
    PMID: 15122050
    BACKGROUND: Plasma ceruloplasmin, a copper containing protein, belongs to a class called acute phase proteins. Reduced level of ceruloplasmin was associated with Wilson's disease and Menke's kinky hair disease in man, primarily affecting copper metabolism. Stress was known to increase Ceruloplasmin. Several stress associated changes were commonly observed in women at menopause and also those who underwent overiectomy. Present experiment investigated the effect of estrogen on ceruloplasmin level in acute stress.

    AIMS: To assess the estradiol induced changes in plasma ceruloplasmin concentration on exposure of the rats to acute stress.

    SETTINGS AND DESIGN: Acute stress was induced by forcing the rats to swim till exhaustion. The rats were overiectomised bilaterally to remove the primary source of sex hormones. And hormone replacement was done later.

    MATERIAL AND METHODS: Wistar albino female rats were used. Acute stress was induced before overiectomy, following recovery from surgery, and again after Estradiol Valerate injection (for 10 days) in same group of rats. The plasma ceruloplasmin was estimated immediately after stress during each stage--that is preoperative control, stressed control, after overiectomy and then following treatment with Estradiol Valerate.

    STATISTICAL ANALYSIS USED: Paired sample T test was applied to analyze the findings.

    RESULTS: We found lowest ceruloplasmin level after stress in overiectomised animals, while on substitution of estradiol the trend appeared to be reversed.

    CONCLUSION: The result suggested a direct effect of estrogen on hepatic ceruloplasmin production/release and this could account for some of the beneficial effects of hormone replacement therapy.

    Matched MeSH terms: Estradiol/pharmacology*
  5. Gholami K, Muniandy S, Salleh N
    Biomed Res Int, 2013;2013:840121.
    PMID: 23509787 DOI: 10.1155/2013/840121
    Precise uterine fluid pH regulation may involve the Na(+)/H(+)-exchanger (NHE). We hypothesized that NHE isoforms are differentially expressed under different sex steroid treatment and at different oestrous cycle phases which may explain the uterine fluid pH changes observed under these conditions.
    Matched MeSH terms: Estradiol/pharmacology*
  6. Chinigarzadeh A, Muniandy S, Salleh N
    Environ Toxicol Pharmacol, 2015 Jul;40(1):39-48.
    PMID: 26068551 DOI: 10.1016/j.etap.2015.05.003
    Maintaining near normal uterine fluid pH is important for restoring uterine function after menopause. We hypothesized that genistein could restore uterine fluid pH via its effect on NHE expression. This study therefore investigated changes in uterine NHE-1, 2 and 4 expression under genistein influence. Ovariectomized female rats received genistein (25, 50 or 100mg/kg/day) for seven consecutive days. Uteri were harvested and NHE-1, 2 and 4 mRNA expression were analyzed by Real-time PCR while distribution of these transporters' protein was observed by immunohistochemistry. Expression of NHE-1, 2 and 4 mRNA increased with increasing doses of genistein which was antagonized by ICI 182780. Under genistein influence, NHE-1, 2 and 4 proteins were found to be distributed at apical membrane of endometrial luminal epithelia. Enhanced expression of NHE-1, 2 and 4 in ovariectomised rat uteri by genistein might help to restore pH of uterine fluid which could be useful for women after menopause.
    Matched MeSH terms: Estradiol/pharmacology
  7. Chatterjee A, Singh R, Chatterjee R
    Pharmacol Res, 1993 May-Jun;27(4):359-64.
    PMID: 8367382
    Dexamethasone blocks aromatase and phospholipase A2 enzyme activities that are essentially involved in the formation of oestrogens and prostaglandins, the key chemicals to initiate parturition. The present study was undertaken to determine whether dexamethasone, a potent glucocorticoid, could prolong gestation and/or delay parturition in rats. Dexamethasone at 0.5 mg/rat/day from Day 19 through Day 21 of pregnancy consistently prolonged gestation. Only 36% of the pregnant rats had labour with an extended parturition time. Foetal mortality rate was also high. The remaining 64% pregnant rats that did not deliver showed intrauterine foetal death and resorption. Concomitant injection of oestradiol cyclopentylpropionate or prostaglandin F2 alpha on Day 19 effectively reversed the deleterious effects of dexamethasone. 100% of the pregnant rats had successful labour at term. The parturition time and foetal mortality rate were not different from controls. The results, therefore, indicate that an excess glucocorticoid that initiates parturition in sheep conversely prolongs gestation and delays parturition in rats.
    Matched MeSH terms: Estradiol/pharmacology
  8. Hawariah A, Stanslas J
    Anticancer Res, 1998 Nov-Dec;18(6A):4383-6.
    PMID: 9891496
    Previous studies have shown that a styrylpyrone derivative (SPD) from a local tropical plant had antiprogestin and antiestrogenic effects in early pregnant mice models (Azimahtol et al. 1991). Antiprogestins and antiestrogens can be exploited as a therapeutic approach to breast cancer treatment and thus the antitumor activity of SPD was tested in three different human breast cancer cell lines that is: MCF- 7, T47D and MDA-MB-231, employing, the antiproliferative assay of Lin and Hwang (1991) slightly modified. SPD (10(-10) - 10(-6) M) exhibited strong antiproliferative activity in estrogen and progestin-dependent MCF-7 cells (EC50 = 2.24 x 10(-7) M) and in hormone insensitive MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but caused only partial inhibition of the estrogen- insensitive T47D cells (EC50 = 1.58 x 10(-6) M). However, tamoxifen showed strong inhibition of MCF-7 cells (EC50 = 1.41 x 10(-6) M) and to a lesser extent the T47D cells (EC50 = 2.5 x 10(-6) M) but did not affect the MDA-MB-231 cells. SPD at 1 microM exerted a beffer antiestrogenic activity than 1 microM tamoxifen in suppressing the growth of MCF-7 cells stimulated by 1 nM estradiol. Combined treatment of both SPD and tamoxifen at 1 microM showed additional inhibition on the growth of MCF-7 cells in culture. The antiproliferative properties of SPD are effective on both receptor positive and receptor negative mammary cancer cells, and thus appear to be neither dependent on cellular receptor status nor cellular hormone responses. This enhances in vivo approaches as tumors are heterogenous masses with varying receptor status.
    Matched MeSH terms: Estradiol/pharmacology*
  9. Kuah KB
    Med J Malaysia, 1975 Mar;30(3):223-6.
    PMID: 1160683
    Matched MeSH terms: Estradiol/pharmacology
  10. Shahzad H, Giribabu N, Karim K, Muniandy S, Kassim NM, Salleh N
    Reprod Toxicol, 2017 04;69:276-285.
    PMID: 28341573 DOI: 10.1016/j.reprotox.2017.03.012
    Effects of quercetin on uterine fluid volume and aquaporin (AQP) expression in the uterus were investigated. Estradiol (E) or estradiol followed by progesterone (E+P) were given to ovariectomised rats with or without quercetin (10, 50 or 100mg/kg/day) treatment. Uteri were harvested and its inner/outer circumference ratio was determined. AQP-1, 2, 5 and 7 mRNA and protein levels in uterus were quantified by Real-time PCR and Western blotting respectively. Protein distribution was observed by immunohistochemistry. Administration of quercetin in E-treated rats decreased the uterine fluid volume and uterine AQP-2 expression. In E+P-treated rats, administration of 100mg/kg/day quercetin increased uterine fluid volume, AQP-1 and 2 expression but decreased AQP-7 expression in uterus. AQP-1 was distributed in stromal blood vessels while AQP-2, 5 and 7 were distributed in uterine epithelium.

    CONCLUSIONS: Quercetin-induced changes in uterine fluid volume and AQP subunits expression in uterus could affect the uterine reproductive functions under different sex-steroid influence.

    Matched MeSH terms: Estradiol/pharmacology*
  11. Cheah SH, Ng KH, Johgalingam VT, Ragavan M
    J Endocrinol, 1995 Aug;146(2):331-7.
    PMID: 7561646
    The effects of exogenously introduced oestradiol-17 beta (E) and relaxin (RLX) on cervical extensibility and collagen organisation were tested in rats ovariectomised in late pregnancy. When the cervices were stretched in vitro by 1 mm increments, it was found that those from rats given E alone generated significantly higher tensions than those from control rats, while cervices from rats given both E and RLX had tensions similar to controls. Examination of cervical sections under the light microscope and ultra-thin sections under the electron microscope showed that the collagen fibres in the cervices from E-treated rats were highly organised, whereas those from animals given E+RLX and control animals were disorganised and dispersed. It was concluded that E decreased cervical extensibility, while RLX counteracted the effect of E to maintain a soft and easily extensible cervix.
    Matched MeSH terms: Estradiol/pharmacology
  12. Sheikh SA, Roshan TM, Khattak MN, Baig AA, Noor SJ, Hassan R, et al.
    Menopause Int, 2011 Mar;17(1):6-10.
    PMID: 21427417 DOI: 10.1258/mi.2011.011001
    In healthy postmenopausal women (PMW) increased platelet activation has been associated with adverse cardiovascular events. There is much debate about the relationship between platelet function and serum estradiol level in PMW. This study assessed the effect of short-term oral estrogen replacement therapy (ERT) on platelet activation markers (CD62P and PAC-1) and its correlation with age and body mass index (BMI) among healthy PMW.
    Matched MeSH terms: Estradiol/pharmacology
  13. Nwe KH, Hamid A, Morat PB, Khalid BA
    Steroids, 2000 Jan;65(1):40-5.
    PMID: 10624835
    11Beta-hydroxysteroid dehydrogenase (11beta-HSD) Type I enzyme is found in testis and liver. In Leydig cell cultures, 11beta-HSD activity is reported to be primarily oxidative while another report concluded that is primarily reductive. Hepatic 11beta-HSD preferentially catalyzes reduction and the reaction direction is unaffected by the external factors. Recent analysis of testicular 11beta-HSD revealed two kinetically distinct components. In the present study, various steroid hormones or glycyrrhizic acid (GCA), given for 1 week, or thyroxine given for 5 weeks to normal intact rats had different effects on the 11beta-HSD oxidative activity in testis and liver. Deoxycorticosterone, dexamethasone, progesterone, thyroxine, and clomiphene citrate increased testicular 11beta-HSD oxidative activity, but decreased hepatic enzyme activity except for deoxycorticosterone (unchanged). Corticosterone and testosterone decreased 11beta-HSD oxidative activity in testis but not that of liver (which was unchanged). Estradiol, GCA and adrenalectomy lowered oxidative activity of 11beta-HSD in testis and liver, but the degrees of reduction were different. The in vivo effects of glucocorticoids too were different, even in the same organ. Dexamethasone, a pure glucocorticoid, has greater affinity for glucocorticoid receptors (GR) than corticosterone. The direct effects of dexamethasone via GR in increasing testicular 11beta-HSD oxidative activity may override its indirect effects. Possibly, the reverse occurs with corticosterone treatment, as it has both glucocorticoid and mineralocorticoid effects. Because both organs have Type I isoenzyme, the difference in 11beta-HSD oxidative activities of these two organs could be attributable to the presence of an additional isozyme in testis or differences in tissue-specific regulatory mechanisms.
    Matched MeSH terms: Estradiol/pharmacology
  14. Nwe KH, Morat PB, Khalid BA
    Gen. Pharmacol., 1997 May;28(5):661-4.
    PMID: 9184798
    1. Sex steroids have been shown to regulate the biosynthesis of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD). 2. In vitro studies showed that oestradiol (E2) or testosterone (T) can interfere with the bioassay of enzyme activity, but not progesterone (P4). 3. For in vivo studies, the activity of 11 beta-HSD in the testis of normal and adrenalectomized (ADX) adult male Wistar rats was determined following a daily IM injection of sex steroids for 7 days. 4. The 11 beta-HSD activity was significantly reduced (P < 0.01) either by E2 or T in normal and ADX rats. The enzyme activity in normal rats given both T and E2 was even lower (P < 0.001) than when E2 was given alone. 5. P4 given to normal and ADX rats increased the enzyme activity higher than normal (P < 0.001). 6. The presence of corticosteroids influenced the effects of E2, but not of T and P4, on 11 beta-HSD activity. 7. E2 and T downregulate 11 beta-HSD activity, whereas P4 increased it. E2 did not act through lowering T level.
    Matched MeSH terms: Estradiol/pharmacology
  15. Kamis AB, Ahmad RA, Badrul-Munir MZ
    Parasitol Res, 1994;80(1):74-7.
    PMID: 8153130
    Gonadectomized male laboratory rats were given 0.06 mg/kg estradiol benzoate daily for 14 days before being inoculated with 50 third-stage larvae of Parastrongylus malaysiensis. Hormone treatment was continued until the rats were killed. The numbers of larvae in the brain and of adult worms in the pulmonary area of the rats were determined every 7 days after the inoculation. It was found that the rats treated daily with estradiol benzoate had significantly and consistently higher numbers of larvae and adult worms as compared with the controls. The number of total leukocytes increased significantly after the rats were infected. The results show that estradiol-treated rats become susceptible to P. malaysiensis infection, which may indicate that the immunosuppressive effects of testosterone observed in earlier studies may partly be caused by estradiol that was peripherally aromatized from testosterone.
    Matched MeSH terms: Estradiol/pharmacology
  16. Zarida H, Wan Zurinah WN, Zanariah J, Michael LK, Khalid BA
    Exp. Toxicol. Pathol., 1994 Mar;46(1):31-6.
    PMID: 7916223
    The effect of ovariectomy and sex hormone/s replacement in female rats was investigated by the determination of the tumour marker enzymes gamma-glutamyltranspeptidase (GGT) and alkaline phosphatase (ALP). This was compared to ovariectomized rats receiving sex hormone replacement and treated with carcinogen. Ovariectomy significantly increased the activity of plasma GGT. Plasma and microsomal ALP and microsomal GGT were unchanged. When replacements of estrogen (E), or progesterone (Prog), or combinations of both estrogen and progesterone were given to ovariectomized rats, the activity of plasma GGT was brought to the level of normal intact females. Treatment with carcinogen increased the PGGT activities in intact rats. In ovariectomized rats receiving carcinogen, the PGGT activities were significantly lower than in intact females and rats receiving both hormone replacement and carcinogen (p < 0.01). Carcinogen treatment in case of estrogen or progesterone replacement, either individually or in combination, showed GGT activities comparable to intact females receiving carcinogen. Both plasma and microsomal ALP were not affected by carcinogen administration. These results showed that ovariectomy reduced the severity of hepatocarcinogenesis while sex hormone replacement worsened the process.
    Matched MeSH terms: Estradiol/pharmacology*
  17. Ab-Rahim S, Selvaratnam L, Kamarul T
    Cell Biol Int, 2008 Jul;32(7):841-7.
    PMID: 18479947 DOI: 10.1016/j.cellbi.2008.03.016
    Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.
    Matched MeSH terms: Estradiol/pharmacology*
  18. Satyam SM, Bairy LK, Shetty P
    Neuroendocrinology, 2023;113(6):667-677.
    PMID: 36796342 DOI: 10.1159/000529761
    INTRODUCTION: Differences in pain thresholds may have implications in pain management, as they may account in part for the variability in analgesic requirements between individuals. We planned to investigate the influence of endogenous sex hormones on the analgesic modulation of tramadol in lean and high-fat diet-induced obese Wistar rats.

    METHODS: The whole study was carried out on 48 adult Wistar rats (24 male: 12 obese and 12 lean and 24 female: 12 obese and 12 lean). Each male and female rat group was further subdivided into two groups (n = 6/group) and treated with normal saline/tramadol for 5 days. On the fifth day, 15 min after tramadol/normal saline treatment, animals were tested for pain perception toward noxious stimuli. Later, endogenous 17 beta-estradiol and free testosterone levels in serum were estimated through ELISA methods.

    RESULTS: The present study revealed that female rats experienced more pain sensitivity to noxious stimuli compared to male rats. High-fat diet-induced obese rats experienced more pain sensations to noxious stimuli than lean rats. Obese male rats were found to have significantly low free testosterone and high 17 beta-estradiol levels compared to lean male rats. An increase in serum 17 beta-estradiol level led to increased pain sensation to noxious stimuli. While an increase in free testosterone level resulted in the lowering of pain sensation to noxious stimuli.

    CONCLUSION: The analgesic effect of tramadol was more pronounced in male rats compared to female rats. The analgesic effect of tramadol was more marked in lean rats compared to obese rats. Additional research to elucidate obesity-induced endocrine changes and the mechanisms driving sex hormones in pain perception is needed to foster future interventions to reduce disparities in pain.

    Matched MeSH terms: Estradiol/pharmacology
  19. Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, et al.
    Cytotherapy, 2015 Jan;17(1):46-57.
    PMID: 25457279 DOI: 10.1016/j.jcyt.2014.06.009
    Mesenchymal stromal cells (MSCs) have shown great promise for cell therapy of a wide range of diseases such as diabetes. However, insufficient viability of transplanted cells reaching to damaged tissues has limited their potential therapeutic effects. Expression of estrogen receptors on stem cells may suggest a role for 17β-estradiol (E2) in regulating some functions in these cells. There is evidence that E2 enhances homing of stem cells. Induction of hypoxia-inducible factor-1α (HIF-1α) by E2 and the profound effect of HIF-1α on migration of cells have previously been demonstrated. We investigated the effect of E2 on major mediators involved in trafficking and subsequent homing of MSCs both in vitro and in vivo in diabetic rats.
    Matched MeSH terms: Estradiol/pharmacology*
  20. Yaacob NS, Nasir R, Norazmi MN
    Asian Pac J Cancer Prev, 2013;14(11):6761-7.
    PMID: 24377602
    The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of PPARγ, 15-deoxy-Δ12,14 prostaglandin J2 (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha (ERα)-positive (MCF-7) and ERα-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between PPARγ and ERα, the effect of the ERα ligand, 17β-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The PPARγ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances PPARγ-independent anticancer effects of PGJ2 in the presence of its receptor.
    Matched MeSH terms: Estradiol/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links