Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Zhao H, Kong X, Zhou C
    Mitochondrial DNA, 2014 Oct;25(5):342-4.
    PMID: 23795847 DOI: 10.3109/19401736.2013.800492
    The Pangasius sutchi is an important ornamental and economic fish in Southeast Asia e.g. Thailand, Malaysia and China. The complete mitochondrial genome sequence of P. sutchi has been sequenced, which contains 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes and a non-coding control region with the total length of 16,522 bp. The gene order and composition are similar to most of other vertebrates. Just like most other vertebrates, the bias of G and C was found in different region/genes statistics results. Most of the genes are encoded on heavy strand, except for eight tRNA and ND6 genes. The mitogenome sequence of P. sutchi would contribute to better understand population genetics, evolution of this lineage.
  2. Zhou Y, Sun Y, Pan D, Xia Q, Zhou C
    J Sci Food Agric, 2023 Aug 30;103(11):5412-5421.
    PMID: 37038882 DOI: 10.1002/jsfa.12616
    BACKGROUND: Goose meat is rough and embedded with dense connective tissue, impairing protein solubility. Therefore, to improve the functional properties of goose myofibrillar protein (GMP), ultrasound was used to assist the phosphorylation of GMP.

    RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.

    CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.

  3. Zhou C, Wu X, Pan D, Xia Q, Sun Y, Geng F, et al.
    Food Chem, 2024 Mar 15;436:137711.
    PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711
    To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.
  4. He S, Li M, Sun Y, Pan D, Zhou C, Lan H
    Food Chem, 2024 Jan 01;430:137053.
    PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053
    This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
  5. Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, et al.
    J Mol Model, 2024 Feb 13;30(3):68.
    PMID: 38347278 DOI: 10.1007/s00894-024-05875-7
    CONTEXT: Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity.

    METHODS: The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.

  6. Zhou C, Xia Q, Hamezah HS, Fan Z, Tong X, Han R
    Front Pharmacol, 2024;15:1288584.
    PMID: 38500762 DOI: 10.3389/fphar.2024.1288584
    Objective: To evaluate the efficacy of the fruits of the medicinal plant Forsythia suspensa (Thunb.) Vahl (FS), in treating inflammation-associated diseases through a meta-analysis of animal models, and also probe deeply into the signaling pathways underlying the progression of inflammation. Materials and methods: All data analyses were performed using Review Manager 5.3 and the results are presented as flow diagrams, risk-of-bias summaries, forest plots, and funnel plots. Summary estimates were calculated using a random- or fixed-effect model, depending on the value of I2. Results: Of the 710 records identified in the initial search, 11 were selected for the final meta-analysis. Each study extracted data from the model and treatment groups for analysis, and the results showed that FS alleviated the inflammatory cytokine levels in serum; oxidant indicator: reactive oxygen species; enzymes of liver function; endotoxin and regulatory cells in blood; and improved the antioxidant enzyme superoxide dismutase. Conclusion: FS effectively reversed the change in acute or chronic inflammation indicators in animal models, and the regulation of multiple channel proteins in inflammatory signaling pathways suggests that FS is a good potential drug for inflammatory disease drug therapy.
  7. Zhang X, Zheng Y, Zhou C, Cao J, Zhang Y, Wu Z, et al.
    Ultrason Sonochem, 2024 May;105:106857.
    PMID: 38552299 DOI: 10.1016/j.ultsonch.2024.106857
    This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.
  8. Rao W, Ju S, Sun Y, Xia Q, Zhou C, He J, et al.
    Food Chem, 2024 Nov 15;458:140173.
    PMID: 38943955 DOI: 10.1016/j.foodchem.2024.140173
    Plasma-activated water (PAW) contains multiple active species that alter the structure of myofibrillar protein (MP) to enhance their gel properties. This work investigated the impact of PAW on the oxidation of cysteine in MP by label-free quantitative proteomics. PAW treatment caused the oxidation of 8241 cysteine sites on 2815 proteins, and structural proteins such as nebulin, myosin XVIIIB, myosin XVIIIA, and myosin heavy chain were susceptible to oxidation by PAW. Bioinformatics analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, subcellular localization, and STRING analysis, indicated that these proteins with differential oxidation sites were mainly derived from the cytoplasm and membrane, and were involved in multiple GO terms and KEGG pathways. This is one of the first reports of the redox proteomic changes induced by PAW treatment, and the results are useful for understanding the possible mechanism of PAW-induced oxidation of MP.
  9. Li J, Rao W, Sun Y, Zhou C, Xia Q, He J, et al.
    Food Res Int, 2024 Dec;197(Pt 1):115271.
    PMID: 39593348 DOI: 10.1016/j.foodres.2024.115271
    This study investigated the effects of plasma-activated water (PAW) generated with argon at discharge times of 0, 4, 8, 12, and 16 min on the gel properties and structures of chicken myofibrillar protein (MP). Under treatments of 8, 12, and 16 min, both the gel strength and water retention capacity of MP significantly improved, with the gel strength (0.53 N) peaking at 16 min and the lowest cooking loss(30.38 %). As the treatment time increased from 0 to 16 min, the storage modulus also gradually increased. Results from low-field nuclear magnetic resonance indicated a slowing of water proton mobility, with the proportion of bound water rising from 0.26 % (0 min) to 0.52 % at 16 min. Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy and scanning electron microscopy confirmed PAW's alteration of MP's secondary and tertiary structures and gel microstructure. Additionally, this study explored the influence of argon PAW's primary active species on MP from a molecular docking perspective·H2O2 could form hydrogen bonds with MP, while O3 and NO2‾could interact via both hydrogen bonds and electrostatic interactions. Thus, PAW can alter protein structure and enhance MP's functional properties, providing insights for applying cold plasma in processing chicken gel products.
  10. Feng Y, Ping Tan C, Zhou C, Yagoub AEA, Xu B, Sun Y, et al.
    Food Chem, 2020 Sep 15;324:126883.
    PMID: 32344350 DOI: 10.1016/j.foodchem.2020.126883
    Freeze-thaw cycles (FTC) pretreatment was employed before the vacuum freeze-drying of garlic slices, aimed at improving the drying process and the quality of the end product. Cell viability, water status, internal structure, flavor, chemical composition and thermogravimetric of garlic samples were evaluated. The results indicated that FTC pretreatment reduced the drying time (22.22%-33.33%) and the energy consumption (14.25%-15.50%), owing to the water loss, the increase in free water, and the formation of porous structures. The FTC pretreatment improved thermal stability, flavor and chemical composition content of dried products. The antioxidant activity of polysaccharides extracted from FTC pretreated dried products was higher than that of the unpretreated dried product due to the reduction in polysaccharide molecular weight. This research could pave a route for future production of dried garlic slices having good quality by using the FTC pretreatment, with lower energy consumption and shorter drying time.
  11. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

  12. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
  13. Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, et al.
    Int J Biol Macromol, 2024 Apr;263(Pt 1):130300.
    PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300
    This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
  14. Ang CYS, Chiew YS, Wang X, Ooi EH, Cove ME, Chen Y, et al.
    Comput Methods Programs Biomed, 2024 Jul 11;255:108323.
    PMID: 39029417 DOI: 10.1016/j.cmpb.2024.108323
    BACKGROUND AND OBJECTIVE: Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort.

    METHODS: Hysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison.

    RESULTS: Self-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN.

    CONCLUSION: The collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.

  15. Wang Q, An J, Xia Q, Pan D, Du L, He J, et al.
    Int J Biol Macromol, 2024 Sep 09.
    PMID: 39260642 DOI: 10.1016/j.ijbiomac.2024.135517
    Escherichia coli and Staphylococcus aureus are the most prevalent pathogenic bacteria, often resulting in the foodborne disease outbreaks through food spoilage and foodborne infections. To prevent and control food spoilage and foodborne infections induced by Escherichia coli and Staphylococcus aureus, the antibacterial hydrogels were fabricated using fibrinogen hydrolysate-carrageenan (AHs-C) and flavonoids (apigenin and quercetin), and the antibacterial effect of the composite hydrogels against Escherichia coli and Staphylococcus aureus was further investigated. The results of mechanical property exhibited that the composite hydrogels with 0.2 % of apigenin and quercetin (AHs-C-Ap/Que) showed the highest hardness and swelling property compared with the separate addition of apigenin or quercetin. Scanning electron microscopy and atomic force microscopy showed that the dense networks were formed in the hydrogels of AHs-C-Ap/Que., and the average roughness of AHs-C-Ap/Que. significantly increased to 30.70 nm compared with AHs-C. 1H NMR and FTIR spectra demonstrated that apigenin and quercetin were bound to AHs-C by hydrogen bond, hydrophobic interaction and Schiff base, where the interactions between Ap/Que. and AHs-C was stronger compared with the separate addition of apigenin or quercetin. The hydrogels of AHs-C-Ap/Que. showed the highest antibacterial capacity and antibacterial adhesion against Escherichia coli and Staphylococcus aureus. The antibacterial adhesion assay showed that 99 % removal ratios for E. coli and S. aureus were observed in AHs-C-Ap/Que. hydrogels, which showed a great potential to prevent food spoilage and foodborne infections.
  16. Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, et al.
    Ann Oncol, 2015 Sep;26(9):1883-1889.
    PMID: 26105600 DOI: 10.1093/annonc/mdv270
    BACKGROUND: The phase III, randomized, open-label ENSURE study (NCT01342965) evaluated first-line erlotinib versus gemcitabine/cisplatin (GP) in patients from China, Malaysia and the Philippines with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC).

    PATIENTS AND METHODS: Patients ≥18 years old with histologically/cytologically confirmed stage IIIB/IV EGFR mutation-positive NSCLC and Eastern Cooperative Oncology Group performance status 0-2 were randomized 1:1 to receive erlotinib (oral; 150 mg once daily until progression/unacceptable toxicity) or GP [G 1250 mg/m(2) i.v. days 1 and 8 (3-weekly cycle); P 75 mg/m(2) i.v. day 1, (3-weekly cycle) for up to four cycles]. Primary end point: investigator-assessed progression-free survival (PFS). Other end points include objective response rate (ORR), overall survival (OS), and safety.

    RESULTS: A total of 217 patients were randomized: 110 to erlotinib and 107 to GP. Investigator-assessed median PFS was 11.0 months versus 5.5 months, erlotinib versus GP, respectively [hazard ratio (HR), 0.34, 95% confidence interval (CI) 0.22-0.51; log-rank P < 0.0001]. Independent Review Committee-assessed median PFS was consistent (HR, 0.42). Median OS was 26.3 versus 25.5 months, erlotinib versus GP, respectively (HR, 0.91, 95% CI 0.63-1.31; log-rank P = .607). ORR was 62.7% for erlotinib and 33.6% for GP. Treatment-related serious adverse events (AEs) occurred in 2.7% versus 10.6% of erlotinib and GP patients, respectively. The most common grade ≥3 AEs were rash (6.4%) with erlotinib, and neutropenia (25.0%), leukopenia (14.4%), and anemia (12.5%) with GP.

    CONCLUSION: These analyses demonstrate that first-line erlotinib provides a statistically significant improvement in PFS versus GP in Asian patients with EGFR mutation-positive NSCLC (NCT01342965).

  17. Zhou C, Yu T, Zhu R, Lu J, Ouyang X, Zhang Z, et al.
    Int J Biol Sci, 2023;19(5):1471-1489.
    PMID: 37056925 DOI: 10.7150/ijbs.77979
    Timosaponin AIII (Tim-AIII), a steroid saponin, exhibits strong anticancer activity in a variety of cancers, especially breast cancer and liver cancer. However, the underlying mechanism of the effects of Tim-AIII-mediated anti-lung cancer effects remain obscure. In this study, we showed that Tim-AIII suppressed cell proliferation and migration, induced G2/M phase arrest and ultimately triggered cell death of non-small cell lung cancer (NSCLC) cell lines accompanied by the release of reactive oxygen species (ROS) and iron accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion. Interestingly, we found that Tim-AIII-mediated cell death was reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Meanwhile, the heat shock protein 90 (HSP90) was predicted and verified as the direct binding target of Tim-AIII by SwissTargetPrediction (STP) and surface plasmon resonance (SPR) assay. Further study showed that Tim-AIII promoted HSP90 expression and Tim-AIII induced cell death was blocked by the HSP90 inhibitor tanespimycin, indicating that HSP90 was the main target of Tim-AIII to further trigger intracellular events. Mechanical analysis revealed that the Tim-AIII-HSP90 complex further targeted and degraded glutathione peroxidase 4 (GPX4), and promoted the ubiquitination of GPX4, as shown by an immunoprecipitation, degradation and in vitro ubiquitination assay. In addition, Tim-AIII inhibited cell proliferation, induced cell death, led to ROS and iron accumulation, MDA production, GSH depletion, as well as GPX4 ubiquitination and degradation, were markedly abrogated when HSP90 was knockdown by HSP90-shRNA transfection. Importantly, Tim-AIII also showed a strong capacity of preventing tumor growth by promoting ferroptosis in a subcutaneous xenograft tumor model, whether C57BL/6J or BALB/c-nu/nu nude mice. Together, HSP90 was identified as a new target of Tim-AIII. Tim-AIII, by binding and forming a complex with HSP90, further targeted and degraded GPX4, ultimately induced ferroptosis in NSCLC. These findings provided solid evidence that Tim-AIII can serve as a potential candidate for NSCLC treatment.
  18. Rasoul D, Zhang J, Farnell E, Tsangarides AA, Chong SC, Fernando R, et al.
    Cochrane Database Syst Rev, 2024 May 22;5(5):CD014811.
    PMID: 38775253 DOI: 10.1002/14651858.CD014811.pub2
    BACKGROUND: Acute heart failure (AHF) is new onset of, or a sudden worsening of, chronic heart failure characterised by congestion in about 95% of cases or end-organ hypoperfusion in 5% of cases. Treatment often requires urgent escalation of diuretic therapy, mainly through hospitalisation. This Cochrane review evaluated the efficacy of intravenous loop diuretics strategies in treating AHF in individuals with New York Heart Association (NYHA) classification III or IV and fluid overload.

    OBJECTIVES: To assess the effects of intravenous continuous infusion versus bolus injection of loop diuretics for the initial treatment of acute heart failure in adults.

    SEARCH METHODS: We identified trials through systematic searches of bibliographic databases and in clinical trials registers including CENTRAL, MEDLINE, Embase, CPCI-S on the Web of Science, ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry platform (ICTRP), and the European Union Trials register. We conducted reference checking and citation searching, and contacted study authors to identify additional studies. The latest search was performed on 29 February 2024.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving adults with AHF, NYHA classification III or IV, regardless of aetiology or ejection fraction, where trials compared intravenous continuous infusion of loop diuretics with intermittent bolus injection in AHF. We excluded trials with chronic stable heart failure, cardiogenic shock, renal artery stenosis, or end-stage renal disease. Additionally, we excluded studies combining loop diuretics with hypertonic saline, inotropes, vasoactive medications, or renal replacement therapy and trials where diuretic dosing was protocol-driven to achieve a target urine output, due to confounding factors.

    DATA COLLECTION AND ANALYSIS: Two review authors independently screened papers for inclusion and reviewed full-texts. Outcomes included weight loss, all-cause mortality, length of hospital stay, readmission following discharge, and occurrence of acute kidney injury. We performed risk of bias assessment and meta-analysis where data permitted and assessed certainty of the evidence.

    MAIN RESULTS: The review included seven RCTs, spanning 32 hospitals in seven countries in North America, Europe, and Asia. Data collection ranged from eight months to six years. Following exclusion of participants in subgroups with confounding treatments and different clinical settings, 681 participants were eligible for review. These additional study characteristics, coupled with our strict inclusion and exclusion criteria, improve the applicability of the body of the evidence as they reflect real-world clinical practice. Meta-analysis was feasible for net weight loss, all-cause mortality, length of hospital stay, readmission, and acute kidney injury. Literature review and narrative analysis explored daily fluid balance; cardiovascular mortality; B-type natriuretic peptide (BNP) change; N-terminal-proBNP change; and adverse incidents such as ototoxicity, hypotension, and electrolyte imbalances. Risk of bias assessment revealed two studies with low overall risk, four with some concerns, and one with high risk. All sensitivity analyses excluded trials at high risk of bias. Only narrative analysis was conducted for 'daily fluid balance' due to diverse data presentation methods across two studies (169 participants, the evidence was very uncertain about the effect). Results of narrative analysis varied. For instance, one study reported higher daily fluid balance within the first 24 hours in the continuous infusion group compared to the bolus injection group, whereas there was no difference in fluid balance beyond this time point. Continuous intravenous infusion of loop diuretics may result in mean net weight loss of 0.86 kg more than bolus injection of loop diuretics, but the evidence is very uncertain (mean difference (MD) 0.86 kg, 95% confidence interval (CI) 0.44 to 1.28; 5 trials, 497 participants; P < 0.001, I2 = 21%; very low-certainty evidence). Importantly, sensitivity analysis excluding trials with high risk of bias showed there was insufficient evidence for a difference in bodyweight loss between groups (MD 0.70 kg, 95% CI -0.06 to 1.46; 3 trials, 378 participants; P = 0.07, I2 = 0%). There may be little to no difference in all-cause mortality between continuous infusion and bolus injection (risk ratio (RR) 1.53, 95% CI 0.81 to 2.90; 5 trials, 530 participants; P = 0.19, I2 = 4%; low-certainty evidence). Despite sensitivity analysis, the direction of the evidence remained unchanged. No trials measured cardiovascular mortality. There may be little to no difference in the length of hospital stay between continuous infusion and bolus injection of loop diuretics, but the evidence is very uncertain (MD -1.10 days, 95% CI -4.84 to 2.64; 4 trials, 211 participants; P = 0.57, I2 = 88%; very low-certainty evidence). Sensitivity analysis improved heterogeneity; however, the direction of the evidence remained unchanged. There may be little to no difference in the readmission to hospital between continuous infusion and bolus injection of loop diuretics (RR 0.85, 95% CI 0.63 to 1.16; 3 trials, 400 participants; P = 0.31, I2 = 0%; low-certainty evidence). Sensitivity analysis continued to show insufficient evidence for a difference in the readmission to hospital between groups. There may be little to no difference in the occurrence of acute kidney injury as an adverse event between continuous infusion and bolus injection of intravenous loop diuretics (RR 1.02, 95% CI 0.70 to 1.49; 3 trials, 491 participants; P = 0.92, I2 = 0%; low-certainty evidence). Sensitivity analysis continued to show that continuous infusion may make little to no difference on the occurrence of acute kidney injury as an adverse events compared to the bolus injection of intravenous loop diuretics.

    AUTHORS' CONCLUSIONS: Analysis of available data comparing two delivery methods of diuretics in acute heart failure found that the current data are insufficient to show superiority of one strategy intervention over the other. Our findings were based on trials meeting stringent inclusion and exclusion criteria to ensure validity. Despite previous reviews suggesting advantages of continuous infusion over bolus injections, our review found insufficient evidence to support or refute this. However, our review, which excluded trials with clinical confounders and RCTs with high risk of bias, offers the most robust conclusion to date.

  19. Cheng Y, Zheng Y, Cai X, Wang L, Zhou C, Cao J, et al.
    Food Res Int, 2024 Dec;197(Pt 1):115166.
    PMID: 39593377 DOI: 10.1016/j.foodres.2024.115166
    This study examined the impact of pre-acidification induction on the quality attributes and flavor retention of ready-to-cook (RTC) goose meat products. The results demonstrated that pre-acidification could influence the eating qualities of RTC goose meat by effectively regulating the physicochemical properties of goose myofibrillar proteins (MP) including solubility and water-holding capacity. Elevated carbonyl contents indicated an enhanced gel-forming capacity in RTC goose meat during storage, accompanied with reduced total sulfhydryl contents from enhanced protonation pretreatment and augmented lipid oxidation. Structural characterization of MP via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, and intrinsic fluorescence revealed the formation of a dense protein matrix under highly acidic conditions. Furthermore, the headspace concentration of aldehydes increased by 3.23 times upon enhancing the pre-acidification intensity, resulting in the production of esters and acidic flavor compounds with favorable aromas. Correlation analysis demonstrated the dependence of headspace concentrations of volatile constituents on the acidification-enhanced surface hydrophobicity of MP, attributed to the modified binding sites of proteins after pre-acidification. Current results have indicated both the positive and negative influence of pre-acidulation induction on the eating quality of goose meat products, suggesting the necessity of introducing extra processes to modulate the quality of prefabricated products.
  20. Park K, Vansteenkiste J, Lee KH, Pentheroudakis G, Zhou C, Prabhash K, et al.
    Ann Oncol, 2020 02;31(2):191-201.
    PMID: 31959336 DOI: 10.1016/j.annonc.2019.10.026
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of early and locally-advanced non-small-cell lung cancer (NSCLC) was published in 2017, and covered the diagnosis, staging, management and treatment of both early stage I and II disease and locally-advanced stage III disease. At the ESMO Asia Meeting in November 2018, it was decided by both the ESMO and the Korean Society of Medical Oncology (KSMO) to convene a special face-to-face guidelines meeting in 2019 in Seoul. The aim was to adapt the ESMO 2017 guidelines to take into account potential differences related to ethnicity, cancer biology and standard practices associated with the treatment of locally-advanced, unresectable NSCLC in Asian patients. These guidelines represent the consensus opinions reached by those experts in the treatment of patients with lung cancer who represented the oncology societies of Korea (KSMO), China (CSCO), India (ISMPO), Japan (JSMO), Malaysia (MOS), Singapore (SSO) and Taiwan (TOS). The voting was based on scientific evidence, and it was independent of both local current treatment practices and the treatment availability and reimbursement situations in the individual participating Asian countries.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links