Affiliations 

  • 1 Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China. Electronic address: [email protected]
  • 2 Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
  • 3 Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
  • 4 Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China. Electronic address: [email protected]
Food Chem, 2024 Mar 15;436:137711.
PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711

Abstract

To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications