The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.