Affiliations 

  • 1 School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
  • 2 School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
  • 3 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
  • 4 School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia. Electronic address: [email protected]
Chemosphere, 2022 Jan;287(Pt 2):132108.
PMID: 34509022 DOI: 10.1016/j.chemosphere.2021.132108

Abstract

The groundbreaking innovation and industrialization are ushering in a new era where technology development is integrated with the sustainability of materials. Over the decade, nanocrystalline cellulose (NCC) obtained from lignocellulosic biomass had created a great value in various aspects. The abundantly available empty fruit bunch (EFB) in the palm oil industry has motivated us to utilize it as a sustainable alternative for the isolation of NCC, which is a worthwhile opportunity to the waste management of EFB. Taking advantage of the shape anisotropy and amphiphilic character, NCC has been demonstrated as a natural stabilizer for oil-in-water emulsion. In this work, preparation of highly stable Pickering nanoemulsion using black cumin seed oil and NCC was attempted. Black cumin seed oil is a class of plant oil with various nutritional and pharmaceutical benefits. However, its poor solubility could substantially lower the therapeutic effect, and thus, requires a delivery system to overcome this limitation. The role of NCC in the formation of stable Pickering nanoemulsion was investigated. The emulsification process was found crucial to the resulting droplet size, whereas NCC contributed critically to its stabilization. The droplet size obtained from ultrasonication and microfluidization was approximately 400 nm, as examined using transmission electron microscopy. The droplet (oil-to-water = 2:8) has long-term stability against creaming and coalescence for more than six months. The nanoemulsion stabilized by NCC could allow a better absorption by the human body, thereby maximizing the potential of black cumin seed oil in the personal care and food industries.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.