Affiliations 

  • 1 Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
  • 2 STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
  • 3 Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China. Electronic address: [email protected]
Int J Biol Macromol, 2021 Jul 31;183:490-501.
PMID: 33957197 DOI: 10.1016/j.ijbiomac.2021.04.186

Abstract

The wingless-type MMTV integration site family member-4 (Wnt4), a member of the wingless-related integration site (Wnt) family, is widely accepted as a key regulator of ovarian development in mammals. In this study, a full-length cDNA of Wnt4 (designated as Sp-Wnt4) was cloned, characterized, and functionally studied in mud crab (Scylla paramamosain). The full-length cDNA of Sp-Wnt4 consists of 2659 bp with an open reading frame (ORF) encoding 359 amino acids, a 907 bp 5'-UTR and a 672 bp 3'-UTR. Sp-Wnt4 contains 25 cysteine (Cys) residues and three potential N-glycosylation sites. Sp-Wnt4 protein shared the highest identity (98.9%) to the Wnt4 protein of Portunus trituberculatus. The phylogenetic tree showed that Sp-Wnt4 and Wnt4 protein of Malacostracan crustaceans clustered together, indicating that they had a close genetic distance. Sp-Wnt4 was expressed at a higher level in the ovary compared to other tissues, with the highest expression level at the third stage (O-III) of the ovarian development (P < 0.05). A downward trend was observed in the expression level of Sp-Wnt4 from the embryo stage to crablet stages (P < 0.05). After unilateral eyestalk ablation, the expression level of Sp-Wnt4 significantly increased in testis (14-fold) and downregulated (3.1-fold) in the gill (P < 0.05) of females. In situ hybridization (ISH) assay revealed that Sp-Wnt4 transcripts were mainly localized in the cytoplasm of oocyte cells. These findings showed that Sp-Wnt4 play crucial roles in the ovarian development of S. paramamosain. In conclusion, our study provides novel insights into the evolution and roles of the Wnt4 gene.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.