Affiliations 

  • 1 Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2 Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46023, Iraq
  • 3 Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
  • 4 Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46023, Iraq
  • 5 Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia
Materials (Basel), 2021 Jan 26;14(3).
PMID: 33530457 DOI: 10.3390/ma14030573

Abstract

In this study, cobalt-based metal-organic framework (MOF) powder was prepared via the solvothermal method using 2,6-naphthalenedicarboxylic acid (NDC) as the organic linker and N,N-dimethylformamide (DMF) as the solvent. The thermal decomposition of the pristine cobalt-based MOF sample (CN-R) was identified using a thermogravimetric examination (TGA). The morphology and structure of the MOFs were modified during the pyrolysis process at three different temperatures: 300, 400, and 500 °C, which labeled as CN-300, CN-400, and CN-500, respectively. The results were evidenced via field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The crystallite size of all samples was calculated using Scherrer's equation. The smallest crystallite size of 7.77 nm was calculated for the CN-300 sample. Fourier transform infrared spectroscopy (FTIR) spectra were acquired for all the samples. The graphical study of the cyclic voltammogram (CV) gave the reduction and oxidation peaks. The charge transfer resistance and ionic conductivity were studied using electrical impedance spectroscopy (EIS). The galvanostatic charge-discharge (GCD) responses of all samples were analyzed. The relatively high specific capacitance of 229 F g-1 at 0.5 A g-1 was achieved in the sample CN-300, whereby 110% of capacitance was retained after 5000 cycles. These findings highlighted the durability of the electrode materials at high current densities over a long cycle.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications