Affiliations 

  • 1 Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
  • 2 Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • 3 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • 4 Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia. Electronic address: [email protected]
  • 5 Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark. Electronic address: [email protected]
Environ Res, 2020 12;191:110046.
PMID: 32841638 DOI: 10.1016/j.envres.2020.110046

Abstract

Locusts differ from ordinary grasshoppers in their ability to swarm over long distances and are among the oldest migratory pests. The ecology and biology of locusts make them among the most devastating pests worldwide and hence the calls for actions to prevent the next outbreaks. The most destructive of all locust species is the desert locust (Schistocerca gregaria). Here, we review the current locust epidemic 2020 outbreak and its causes and prevention including the green technologies that may provide a reference for future directions of locust control and food security. Massive locust outbreaks threaten the terrestrial environments and crop production in around 100 countries of which Ethiopia, Somalia and Kenya are the most affected. Six large locust outbreaks are reported for the period from 1912 to 1989 all being closely related to long-term droughts and warm winters coupled with occurrence of high precipitation in spring and summer. The outbreaks in East Africa, India and Pakistan are the most pronounced with locusts migrating more than 150 km/day during which the locusts consume food equivalent to their own body weight on a daily basis. The plague heavily affects the agricultural sectors, which is the foundation of national economies and social stability. Global warming is likely the main cause of locust plague outbreak in recent decades driving egg spawning of up to 2-400,000 eggs per square meter. Biological control techniques such as microorganisms, insects and birds help to reduce the outbreaks while reducing ecosystem and agricultural impacts. In addition, green technologies such as light and sound stimulation seem to work, however, these are challenging and need further technological development incorporating remote sensing and modelling before they are applicable on large-scales. According to the Food and Agriculture Organization (FAO) of the United Nations, the 2020 locust outbreak is the worst in 70 years probably triggered by climate change, hurricanes and heavy rain and has affected a total of 70,000 ha in Somalia and Ethiopia. There is a need for shifting towards soybean, rape, and watermelon which seems to help to prevent locust outbreaks and obtain food security. Furthermore, locusts have a very high protein content and is an excellent protein source for meat production and as an alternative human protein source, which should be used to mitigate food security. In addition, forestation of arable land improves local climate conditions towards less precipitation and lower temperatures while simultaneously attracting a larger number of birds thereby increasing the locust predation rates.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.