Affiliations 

  • 1 H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
  • 2 Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
  • 3 Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
  • 4 Faculty of Pharmacy, AIMST University, Kedah, 08100, Malaysia
  • 5 Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
  • 6 Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
  • 7 H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia. Electronic address: [email protected]
Eur J Med Chem, 2019 Dec 01;183:111677.
PMID: 31514061 DOI: 10.1016/j.ejmech.2019.111677

Abstract

Benzotriazoles (4-6) were synthesized which were further reacted with different substituted benzoic acids and phenacyl bromides to synthesize benzotriazole derivatives (7-40). The synthetic compounds (7-40) were characterized via different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C NMR. These molecules were examined for their anti-hyperglycemic potential hence were evaluated for α-glucosidase and α-amylase inhibitory activities. All benzotriazoles displayed moderate to good inhibitory activity in the range of IC50 values of 2.00-5.6 and 2.04-5.72 μM against α-glucosidase and α-amylase enzymes, respectively. The synthetic compounds were divided into two categories "A" and "B", in order to understand the structure-activity relationship. Compounds 25 (IC50 = 2.41 ± 1.31 μM), (IC50 = 2.5 ± 1.21 μM), 36 (IC50 = 2.12 ± 1.35 μM), (IC50 = 2.21 ± 1.08 μM), and 37 (IC50 = 2.00 ± 1.22 μM), (IC50 = 2.04 ± 1.4 μM) with chloro substitution/s at aryl ring were found to be most active against α-glucosidase and α-amylase enzymes. Molecular docking studies on all compounds were performed which revealed that chloro substitutions are playing a pivotal role in the binding interactions. The enzyme inhibition mode was also studied and the kinetic studies revealed that the synthetic molecules have shown competitive mode of inhibition against α-amylase and non-competitive mode of inhibition against α-glucosidase enzyme.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.