Affiliations 

  • 1 UWA Dental School, University of Western Australia, M512, 17 Monash Avenue, Nedlands, WA 6009, Australia. Electronic address: [email protected]
  • 2 Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
  • 3 Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Pokfulam, Hong Kong SAR, China
Dent Mater, 2019 07;35(7):979-989.
PMID: 31003759 DOI: 10.1016/j.dental.2019.04.001

Abstract

OBJECTIVE: This study introduced the potential and proof-of-concept of high intensity focused ultrasound (HIFU) technology for dentin-surface treatment for resin-dentin bonding without acid-aided demineralization. This new strategy could provide a way to enhance interface-integrity and bond-durability by changing the nature of dentin-substrate; bonded-interface structure and properties; and minimizing denuded-collagen exposure.

METHODS: The interaction between HIFU waves and dentin-surface in terms of structural, mechanical and chemical variations were investigated by SEM, TEM, AFM, nano-indentation and Raman-analysis. The bonding between HIFU-treated dentin and two-step, etch-and-rinse, adhesive was preliminary explored by characterizing dentin-bound proteases activities, resin-dentin interfacial morphology and bond-durability with HIFU exposure at different time-points of 60, 90 and 120 s compared to conventional acid-etching technique.

RESULTS: With the increase in HIFU exposure-time from 60-to-120 s, HIFU waves were able to remove the smear-layer, expose dentinal-tubules and creating textured/rough dentin surface. In addition, dentin surfaces showed a pattern of interlocking ribbon-like minerals-coated collagen-fibrils protruding from the underlaying amorphous dentin-background with HIFU exposure for 90 s and 120 s. This characteristic pattern of dentin-surface showing inorganic-minerals associated/aligned with collagen-fibrils, with 90-to-120 s HIFU-treatment, was confirmed by the Raman-analysis. HIFU-treated specimens showed higher nano-indentation properties and lower concentrations of active MMP-2 and Cathepsin-K compared to the acid-etched specimens. The resin-dentin bonded interface revealed the partial/complete absence of the characteristic hybrid-layer formed with conventional etch-and-rinse bonding strategy. Additionally, resin-infiltration and resin-tags formation were enhanced with the increase in HIFU exposure-time to 120 s. Although, all groups showed significant decrease in bond-strength after 12 months compared to 24 h storage in artificial saliva, groups exposed to HIFU for 90 s and 120 s showed significantly higher μTBS compared to the control acid-etched group.

SIGNIFICANCE: The implementation of HIFU-technology for dental hard-tissues treatment could be of potential significance in adhesive/restorative dentistry owing to its ability of controlled, selective and localised combined tissue alteration/ablation effects.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.