Affiliations 

  • 1 Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia. [email protected]
  • 2 Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. [email protected]
  • 3 Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. [email protected]
  • 4 Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. [email protected]
  • 5 Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia. [email protected]
  • 6 Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia. [email protected]
  • 7 Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia. [email protected]
  • 8 Department of Pharmacology, Faculty of Medicine, Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia. [email protected]
Molecules, 2018 Jul 11;23(7).
PMID: 29997309 DOI: 10.3390/molecules23071686

Abstract

Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.