Affiliations 

  • 1 Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia. Electronic address: [email protected]
  • 2 Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, UiTM Shah Alam, 40450 Shah Alam, Selangor D.E., Malaysia
  • 3 Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
  • 4 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
  • 5 Department of Pharmacology, Faculty of Medicine, Cyberjaya University College of Medical Sciences, CUCMS, Cyberjaya 63000, Malaysia
Bioorg Chem, 2017 08;73:121-127.
PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007

Abstract

A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.