Affiliations 

  • 1 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 3 Division of Gastroenterology, Tohoku University of Graduate School of Medicine, Sendai, Miyagi Prefecture 980-8574, Japan
  • 4 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 5 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia. Electronic address: [email protected]
Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006

Abstract

BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.