Affiliations 

  • 1 Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 2 Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 3 Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: [email protected]
Biosens Bioelectron, 2016 Apr 15;78:187-93.
PMID: 26606311 DOI: 10.1016/j.bios.2015.11.045

Abstract

We describe a gold nanoparticle-based sandwich immunoassay for the dual detection and measurement of hemoglobin A1c (HbA1c) and total hemoglobin in the whole blood (without pretreatment) in a single step for personalized medicine. The optimized antibody-functionalized gold nanoparticles immunoreact simultaneously with HbA1c and total hemoglobin to form a sandwich at distinctive test lines to transduce visible signals. The applicability of this method as a personal management tool was demonstrated by establishing a calibration curve to relate % HbA1c, a useful value for type 2 diabetes management, to the signal ratio of captured HbA1c to all other forms of hemoglobin. The platform showed excellent selectivity (100%) toward HbA1c at distinctive test lines when challenged with HbA0, glycated HbA0 and HbA2. The reproducibility of the measurement was good (6.02%) owing to the dual measurement of HbA1c and total hemoglobin. A blood sample stability test revealed that the quantitative measurement of % HbA1c was consistent and no false-positive results were detected. Also, this method distinguished the blood sample with elevated HbF from the normal samples and the variants. The findings of this study highlight the potential of a lateral flow immunosensor as a simple, inexpensive, consistent, and convenient strategy for the dual measurement of HbA1c and total Hb to provide useful % HbA1c values for better on-site diabetes care.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.