Affiliations 

  • 1 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • 2 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Investigative and Forensic Sciences Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Electronic address: [email protected]
  • 3 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • 4 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
  • 5 Biotechnology Program, Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
Int J Biol Macromol, 2024 Nov;280(Pt 2):135787.
PMID: 39304051 DOI: 10.1016/j.ijbiomac.2024.135787

Abstract

This study explores an eco-friendly delignification technique for raw oil palm leaves (OPL), highlighting the optimized conditions of choline chloride-lactic acid deep eutectic solvent (DES)-mediated ball milling pretreatment to maximize the co-production yields of highly crystalline cellulose and lignin. Our five-level-four-factor Taguchi design identified the optimal reaction settings for cellulose production (85.83 % yield, 47.28 % crystallinity) as 90-minute milling, 1500 rpm, mill-ball size ratio of 30:10, ball-to-sample mass ratio of 20:1, DES-to-sample mass ratio of 3:1. Conversely, the maximal lignin extraction yield (35.23 %) occurred optimally at 120-minute milling, 600 rpm, mill-ball size ratio of 25:5, ball-to-sample mass ratio of 20:1 and DES-to-sample mass ratio of 9:1. Statistical results showed that milling frequency (p-value ≤ 0.0001) was highly significant in improving cellulose crystallinity and yield, while DES-to-sample mass ratio (p-value ≤ 0.0001) was the most impacting on lignin yield. The thermogravimetric method affirmed the elevated cellulose thermal stability, corroborating the enhanced cellulose content (40.14 % to 73.67 %) alongside elevated crystallinity and crystallite size (3.31 to 4.72 nm) shown by X-ray diffractograms. The increased surface roughness seen in micrographs mirrored the above-said post-treatment changes. In short, our optimized one-pot dual-action pretreatment effectively delignified the raw OPL to produce cellulose-rich material with enhanced crystallinity and lignin solidity.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.