This study compared the effectiveness of capillary dried blood spots (DBS) versus venous DBS in detecting metabolic changes related to drug-resistant epilepsy (DRE). DBS samples were collected from 142 epilepsy patients (58 drug-resistant, 84 drug-responsive) via venipuncture or fingerstick capillary sampling. Metabolomic analysis using gas chromatography-mass spectrometry compared DBS metabolite profiles between the two groups. While venous DBS profiles showed no distinct patterns, capillary DBS profiles revealed clustering patterns in principal components analysis, with the first two principal components explaining 14.5 %, and 13.5 % of the total variance, respectively. Orthogonal PLS-DA confirmed group discrimination (R2Y=0.989, Q2=0.742). Drug-resistant patients exhibited elevated capillary DBS levels of glutamine, pyruvic acid, and serine, and decreased palmitic acid compared to drug-responsive patients. Pathway analysis revealed disruptions in amino acid metabolism, neurotransmission, and cellular energy regulation. Elevated glutamine levels may contribute to an imbalance between excitatory glutamate and inhibitory GABA neurotransmission, key factors in epileptogenesis and drug resistance. Capillary DBS, likely enriched with arterial blood supply to the brain, appears to better capture central nervous system metabolic disturbances compared to venous DBS containing systemic contributions. This minimally invasive capillary DBS approach offers effective metabolic profiling of brain conditions like DRE, for monitoring disease progression and treatment response, enhancing personalized patient management in epilepsy.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.